
Landscape and Urban Planning 216 (2021) 104239

0169-2046/© 2021 Elsevier B.V. All rights reserved.

Leveraging machine learning to understand urban change with 
net construction 

Nathan Ron-Ferguson a,*, Jae Teuk Chin b,*, Youngsang Kwon c 

a Department of Earth Science, University of Memphis, 109 Johnson Hall, Memphis, TN 38152 United States 
b Department of City and Regional Planning, School of Urban Affairs and Public Policy, University of Memphis, 208 McCord Hall, Memphis, TN 38152 United States 
c Department of Earth Science, University of Memphis, 109 Johnson Hall, Memphis, TN 38152 United States   

H I G H L I G H T S  

• Machine learning offers potential to capture the inherent complexity of urban change. 
• Net construction quantifies construction and demolition as a single combined metric. 
• Random forest regression using net construction outperformed independent models. 
• Net construction reveals land use mix as the most important feature.  
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A B S T R A C T   

A key indicator of urban change is construction, demolition, and renovation. Although these development ac
tivities are often interrelated, they are typically studied independent of one another. Analytic methods relying on 
a strict set of modeling assumptions limit our ability to understand this change holistically. Machine learning has 
demonstrated the potential when combined with big data to discover patterns and relationships between 
seemingly unrelated variables. This research explores urban change through net construction, a composite value 
that treats demolition as a deductive process that is subtracted from construction activity which provides for a 
more holistic and nuanced understanding of development activity. Once validated through a visual analysis of its 
reliability as a measure of urban change, we then used a series of random forest regression models to evaluate the 
predictive accuracy of net construction compared with independent models of construction and demolition. 
Applying the approaches to an urban county in the United States, we compiled 122 independent variables to 
provide a comprehensive view of individual neighborhoods from multi-disciplinary data sources such as socio
economic, built environment characteristics, and landscape metrics. We then analyze the feature importance 
scores derived from the random forest models in an effort to assess the similarities and differences between the 
variables that have the greatest influence on model accuracy. The net construction model produced more ac
curate results than models that used construction and demolition activity independently. While many of the most 
important features aligned with those from the independent models, land use mix drawn from landscape metrics 
appeared as the most important, representing a departure from previous studies. This study provides a scalable 
method for modeling urban change using machine learning techniques and reveals the importance of applying 
data-driven algorithms that can help communities become more informed about their pressing issues.   

1. Introduction 

A community’s urban form and physical characteristics are shaped 
by the interaction of transportation networks and adjacent land uses. 
This association between contributing factors to the built environment 

and the impact it can have on socio-economic conditions has been 
analyzed to comprehend and measure a variety of development pat
terns. A deeper understanding of development patterns is crucial to 
understanding how cities change and how that change may affect the 
people residing in those communities. Varying measures have been used 
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to gain insight into how cities are changing (Ewing and Hamidi, 2015) 
but are typically independent of indicative metrics which often fails to 
present a comprehensive view of how a city is evolving, in particular at 
the parcel or neighborhood scale (Coulton, 2012). 

Construction, demolition, and renovation are key processes of 
development that promote a changing urban configuration. These three 
activities are a common property development unit and provide insights 
on how the built environment functions and relates to urban form at the 
parcel level (Hollander et al., 2019). This study seeks to understand 
what role construction, demolition, and renovation activity can play in 
analyzing and predicting urban change. Additionally, to analyze these 
processes holistically, we developed a net construction value by treating 
demolition as a deductible activity that, once removed from a neigh
borhood’s overall construction rate, provides a more nuanced under
standing of how it is changing. To achieve this goal, we address three 
research questions to be empirically modeled and tested. First, can the 
inclusion of construction, demolition, and renovation permit data as a 
standardized single composite value provide a better and more holistic 
depiction of community change than each activity independently? 
Secondly, what are the underlying characteristics of communities that 
experience different types and rates of change in development patterns? 
Finally, how do these characteristics differ in physical and social terms 
from those previously described in the literature, and what might this 
imply to intervene and manage inefficient urban form? 

One of the most significant challenges in modeling urban change and 
development patterns is how to account for the complexity and non- 
linear relationships between the various factors influencing urban 
form. Conventional methods such as linear regression are limited in 
their ability to handle colinear or non-linear relationships thus it is 
necessary to leverage methods whose inputs are not constrained by 
distributions or data types. In recent years, the emergence of machine 
learning (ML) has helped various disciplines, from computer science to 
statistics to engineering, discover new patterns as a result of improved 
performance for computing complexity. However, the empirical appli
cations of ML in urban studies are still at an early stage that has mainly 
been focused on urban modeling using remotely sensed inputs to classify 
land use and land cover (Abrantes et al., 2019; Ghosh et al., 2014). By 
contrast, this study introduces and utilizes physical and social attributes 
of individual neighborhoods collected from various sources, including 
national census and local data from municipalities. To account for the 
complexity of integrating numerous and extensive data sets with varying 
structures, we present a data-driven methodology using random forest 
(RF). This scalable approach applies to an urban county in the United 
States to demonstrate how it performs when modeling fluctuating 
development patterns across neighborhoods. This will make an analyt
ical and empirical contribution to the literature in ML and urban studies. 

To the best of our knowledge, this paper is one of very few machine 
learning studies investigating urban change at the neighborhood level 
with built environment characteristics. ML methods use data-driven 
model selection by creating and tuning alternative models with the 
data itself, which differs from developing one model specified by the 
researcher. The computational power of ML has been enhanced to deal 
with complicated features of the changing urban environment and may 
offer a new way of city management to implement data interventions 
(Glaeser et al., 2018). This paper is structured into the following sec
tions. The second section outlines the modeling approach for urban 
complexity and reviews machine learning applications in urban studies. 
The third section introduces data and research methods, and the fourth 
section discusses the results of our analysis. The fifth highlights the key 
findings, and the final section concludes with the implications of the 
research. 

2. Modeling complexity and machine learning in urban studies 

The literature of modeling urban change has evolved in response to 
developing new analytical methods and the advancement of data 

technologies. Unfortunately, this evolution often occurs in a disciplinary 
vacuum due to a lack of common definitions and measurements 
regarding what constitutes urban change because of its multidisciplinary 
nature (Clifton et al., 2008) and resulting complexity (Boeing, 2018). 
Research into the underlying factors affecting change is further 
complicated by a need to utilize methods that generate interpretable 
coefficients to promote actionable policy decisions (Waddell and 
Besharati-Zadeh, 2020). 

One of the most common tools in studying urban development and 
resulting urban form has been the suite of regression approaches. Knaap 
et al. (2007) and Lowry and Lowry (2014) utilized linear regression to 
explore the relationship between development patterns and urban 
configuration. Although many of the variables in their research exhibi
ted a linear relationship, reliance upon simple regression models limited 
the types of data used and failed to consider the complex nature of urban 
environments. When a categorical dependent variable was used, Yin and 
Silverman (2015) utilized logistic regression to evaluate the growth 
priorities of Buffalo, New York using construction and demolition per
mits with property acquisition data. Their study is significant as it allows 
for nonlinear relationships among the variables and its use of permits to 
detect where changes occurred. Charles (2011) also used multilevel lo
gistic regression to analyze suburban gentrification and stressed the 
importance of demolition, in case replaced with larger rebuilt housing. 
While these efforts incorporate nonlinear effects, their emphasis on 
abandonment and demolition fails to take a more intricate look at 
development activity in their models. 

Expanding beyond the regression approaches, Talen et al. (2018) 
incorporated some of the complexity by developing a global typology of 
27 built landscape types to associate morphological patterns with social 
disparities across neighborhoods. They found connections between 
previously unexplored relationships such as segregated land uses and 
racial segregation. However, they relied heavily on a subjective manual 
labeling process that limited the ability to replicate their methods and 
the number of variables used. The work of Boessen et al. (2018) supports 
the notion that the built environment plays a significant role in social 
ties in an empirical study. While they confirmed an association between 
morphology and social outcomes, all but the distribution of social net
works lay beyond the purview of observable data, which implies un
certainty in results when modeling the effects of urban form on socio- 
economic standards. This empirical limitation of modeling has gener
ated efforts to review the built environment effect across disciplines 
systematically. Mazumdar et al. (2018) and Carmona (2019) reached 
similar conclusions analyzing different studies and methods. Mazumdar 
et al. examined 23 studies of relationships between morphology and 
social capital to report that design and the presence of destinations were 
significantly related to social capital outcomes. Carmona took 
morphology to be embodied policy and argued that place value may be 
described in terms of the extent to which qualities of the built envi
ronment impact, either positively or negatively, on different social 
policy goals. 

This modeling complexity makes data-driven approaches difficult 
and thus restricts comprehensive understanding of community change. 
The ML methods, once combined with big data, offer alternative 
methodological pathways for urban researchers to reveal new di
mensions of urban phenomena. Although the field of urban studies has 
not seen the same widespread adoption as other disciplines, there has 
been progress in this regard and it is therefore important to explore what 
ML is, and how it has been applied within the context of urban issues. 

In general, machine learning problems fall into three categories: 
supervised, unsupervised, and reinforcement learning (Bishop, 2006). 
Empirical research relying on big data often applies supervised learning, 
in which input vectors are used to train or supervise an algorithm for 
predicting outcomes. RF models, in particular, are a supervised learning 
model that can handle both regression and classification problems 
depending on the input data (Breiman, 2001). RF has been utilized by a 
number of researchers within the realm of urban studies, but its 
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application has been mainly using remote sensing data at the regional 
scale, where it is used to predict or model land use classification, land 
use change, or urban growth (Ghosh et al., 2014; Rodriguez-Galiano 
et al., 2012; Shafizadeh-Moghadam, 2019; Walde et al., 2014). At a 
more localized scale, Ossola et al. (2019) utilized RF methods to handle 
a large volume of LiDAR data to develop a range of yard metrics such as 
canopy height and coverage to study morphological characteristics of 
residential parcels. 

Apart from the use of remotely sensed data in RF, Reades et al. 
(2019) used RF to model gentrification in London using socio-economic 
variables with the presence of collinearity between input variables. They 
compared RF against more traditional methods such as simple and 
multiple regression to determine its effectiveness within the human 
geography domain. RF outperformed both simple and multiple regres
sion regardless of parameter tuning, achieving higher R2 values. Another 
application of RF is as a feature selection method. Yoo et al. (2012) 
implemented RF to identify variables for use in hedonic models to pre
dict housing price. Like Reades et al. (2019), they used socio-economic 
data along with numerous housing characteristics and observed the 
potential for missing an optimal combination of variables when using a 
stepwise regression approach. Most recently, utilizing a combination of 
socio-economic, land assessment, and housing sales data sets in RF 
methods, Auerbach et al. (2020) and Hu et al. (2019) predicted future 
property values and housing rental prices, respectively. Sapena et al. 
(2020) employed RF regression to estimate the predictive power 
morphology in social outcomes. For instance, as much as 68% of income 
variance or 32% of employment rate variance across the six hundred 
urban areas studied may be predicted by spatial data including road 
networks, land cover densities, and built-up footprints. While RF 
regression proved to be extremely powerful when comparing regions, it 
was also highly dependent upon data availability and quality. 

Several transportation studies have also used RF in modeling 
mobility behaviors and route selections. For example, by using national 
household travel survey data, Sabouri et al. (2020) used RF to study the 
relationship between ride-sourcing services like Uber and vehicle 
ownership. This study also corroborates previous findings that ML has 
superior predictive power than conventional models. In this vein, Tribby 
et al. (2017) noted that data-driven RF methods for variable selection 
produced more accurate models than the theory-driven models based on 
predefined walkability factors when analyzing walking route choice 
with GPS-derived trip data. 

Recent applications of ML, artificial intelligence, and urban big data 
extend beyond domains like remote sensing and transportation where 
data format and availability made for easy incorporation. Innovations in 
methodological techniques include the use of computer vision to assess 
change in neighborhood appearance and to correlate that change with 
underlying characteristics (Naik et al., 2017) or the use of recurrent 
neural networks (RNN) to detect urban change (Papadomanolaki et al., 
2019). There have also been numerous innovations regarding the data 
used to understand the relationships between the natural and urban 
environments and their inhabitants. Cao et al. (2021) incorporated 3- 
dimensional building data to study the effect of building morphology 
and air temperature and seasonality. Mora et al. (2018) utilized social 
network service data to determine whether the digital by-products of 
online communication could improve municipal service delivery. 

Despite these recent innovations in urban morphological research, 
there is a need to more closely analyze the systemic nature of urban 
change, and the tendency to draw variables from a single discipline 
reveals a need for methods that can accommodate non-linear relation
ships between neighborhood characteristics and urban change. The 
following sections contain an overview of the methodology that we 
developed to incorporate a more data-centric approach to modeling 

Fig. 1. Study area census tract. Census tracts were used to aggregate permit counts. Census tracts without permits are highlighted in red. (For interpretation of the 
references to colour in this figure legend, the reader is referred to the web version of this article.) 
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urban change. 

3. Data and methodology 

The data used for the study represent a complex and comprehensive 
view of communities. The input variables were drawn from a diverse 
field of disciplines to offer a glimpse into their social, economic, envi
ronmental, and transportation characteristics. 

3.1. Data 

This study is centered on Shelby County, Tennessee and its principal 
city, Memphis which was established on the eastern banks of the Mis
sissippi River (see Fig. 1). The presence of a bluff along the Mississippi 
that today runs roughly between the Interstate 40 and 55 bridges on the 
western edge of the city made it an ideal stop for riverboat traffic and the 
modern central business district (CBD) still contains many of the early 
warehouses from that era. As it developed, the city spread eastward, 
with most of the development occurring between two of the primary 
tributaries, which parallel Interstate 40 and Interstates 55/240, 
respectively. The city’s core falls mostly inside the Interstate 40/240 
loop, and except for a few neighborhoods clustered along U.S. Highway 
72 and the CBD, it has experienced decades of decline and disinvest
ment. As residents left the city, they moved eastward to both unincor
porated regions on the eastern edge of the county line and several 
suburban municipalities. 

We used 2012 census tract boundaries as an analytic unit to serve as a 
proxy for neighborhood boundaries for data aggregation and assessment 
since 2012 was the start year for the 5-year American Community Sur
vey (ACS) estimate used for socio-economic variables. While there has 

been some debate into the validity of census tracts as neighborhood 
units (Clapp and Wang, 2006; Coulton et al., 2001), census tract 
boundaries still provide easy access with which socio-economic, de
mographic, and housing characteristics can be joined for statistical 
purposes. 

Several characteristics of census tract boundaries make them ideal 
units for making comparisons: they are relatively permanent, represent 
a degree of socio-economic similarity among households that are con
tained within them, and on average, contain about 4,000 individuals, 
although this number can range from 2,500 to 8,000 (U.S. Census Bu
reau, 1994). Shelby County exhibits all of these characteristics with a 
total of 221 tracts comprised of an average population of 4,243. There is 
a fair amount of variation in land area across tracts as less dense regions 
may require a larger area to capture the target population set by the 
Census Bureau. This variability is demonstrated in Shelby County’s tract 
acreage ranges from 138 to 34,090 acres. 

3.1.1. Dependent variables 
The dependent variables were derived from construction, renova

tion, and demolition permit data. Drawing a direct connection between 
the specific locations where construction and demolition activity 
occurred within a community is a departure from similar research where 
it is typically aggregated at larger geographic units using median year 
built (Knaap et al., 2007; Lowry and Lowry, 2014). This approach 
allowed for a more granular understanding of urban change, especially 
when considering new construction or renovation occurring in older 
neighborhoods within a central city. 

Permit data were provided by the Memphis and Shelby County Office 
of Planning and Development (OPD), a joint city and county office that 
oversees the administrative functions of planning for both administra
tive districts. OPD permit data covers 15 years from 2002 to 2016 and, 
once processed, consisted of 152,325 records (rows) relating to con
struction and renovation activity and 9,073 records relating to demoli
tion activity (see Table 1 for a sample of the data after conversion). 
While the construction data contained renovation permits, OPD’s 
encoding method made it difficult to separate the two with complete 
accuracy; therefore, renovation and new construction permits were left 
aggregated as a single permit type. For example, in many instances, 
renovation permits can be identified by a valuation amount equal to $0, 
but the existence of numerous new construction permits missing a 
valuation amount made it difficult to separate the two without intro
ducing unnecessary errors. 

Permits were geocoded to convert each application’s address into a 
longitude/latitude pair to analyze geospatial relationships. Once all 
permits were geocoded, the total number of permits covering the 15- 
year period were aggregated using census tract boundaries and any 
census tract missing permits was eliminated from consideration to 
ensure a more accurate account of where potential net neutral devel
opment activity (as defined by the relative difference between con
struction and demolition discussed below). There were 5 tracts without 
any development activity over the 15-year period which dropped the 
sample size from 221 tracts to a total of 216. 

While the use of the full 15-year set of permits seems to run counter 
to a methodology that typically relies on 10-year increments in associ
ation with the decennial census, 2008 and 2009 were landmark years for 
most of the United States as the country grappled with the worst eco
nomic downturn since the Great Depression. This 15-year period pro
vided a critical sample of data both before and after the recession that 
allowed us to establish reliable trends to gain insight into community 
changes and development activities. 

3.1.2. Independent variables 
A total of 122 variables drawn from 17 different sources (see 

Table A1 in Appendix A) were selected to provide a comprehensive view 
of individual communities from the perspective of their inhabitants, 
employers, transportation system, and physical environment. Many of 

Table 1 
Sample permit data after conversion. Personally identifiable information has 
been replaced with “–”.  

Column 
Name 

Construction 
Permit 

Renovation 
Permit 

Demolition Permit 

parcelid D0209B C00020 089001 00056 060222 00140C 
permit B0884362 E0403646 BD000705 
issued 2002-09-17 2005-10-21 2011-04-29 
sub_type res com bus 
const_type new new demo 
valuation 100000 0 0 
address – – – 
zip_code NULL 38134 38123 
fraction Cordova Memphis Memphis 
map_pg 160 33B 63H 
lot 289 NULL NULL 
subdivision LEE LINE FARMS NULL NULL 
zone RS6 NULL EMP FP 
height NULL NULL NULL 
sq_ft 1974 0 0 
cu_ft 0 0 0 
fire_o N NULL N 
sprinkled N NULL N 
health_dep NULL NULL NULL 
num_floors 1 0 0 
relationship OWNER CONTRACTOR CONTRACTOR 
name – – – 
license_no NULL E3715 B3905 
address_1 – – – 
address_2 MEMPHIS 

TENNESSEE 
MEMPHIS, TN MEMPHIS, TN 

address_3 NULL NULL NULL 
zip 38018 38134 38108 
phone – – – 
description NEW DWELLING 

WITH ATTACHED 
GARAGE 

INSTAL FA 126 X 66′ DEMOLISH 
ONE STORY STORAGE 
LOADING DOCK 
BUILDIG 

buildinguse RESIDENTIAL NULL UNOCCUPIED 
year 2002 2005 2011  
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the variables chosen for the study were based upon the findings of Reis 
et al. (2016), whose comprehensive inventory of variables relating to 
urban change demonstrated a need for a more robust collection of fea
tures that included both spatial metrics alongside socio-economic and 
demographic variables. 

The most extensive collection of variables used in the study were 
pulled from the 2012–2016 ACS 5-year estimate performed by the U.S. 
Census Bureau. The 2012–2016 survey was selected because of its 
overlap with the latter years of available permit data as discussed above. 
Since permits are treated as a cumulative snapshot in time, the survey 
data represents the total effect of that aggregate activity. This approach 
aligns with one of the objectives of this study: To determine whether net 
construction (see section 3.2.1) is an effective mechanism for assessing 
urban change. 

While most variables from ACS were collected without any modifi
cation, a few were aggregated for simplicity or to eliminate unnecessary 
redundancy. For example, instead of loading individual racial groups 
and evaluating them independently, all minority groups were combined 
for a single estimate of the non-white population (pct_nonwh). Similar 
aggregation was performed for travel time and travel mode to work, 
combining all age groups for each variable rather than loading each age 
group individually. 

The next largest source of variables for the study was drawn from the 
U.S. Census Bureau’s Longitudinal Employer-Householder Dynamics 
(LEHD) program, specifically the LEHD Origin-Destination Employment 
Statistics dataset (LODES). A total of 25 variables relating to the types of 
industries and the number of jobs by industry were used in the study. 
Unlike data from the ACS, the LODES data were originally reported at 
the census block level thus, we aggregated the sum for the LODES data to 
the census tract level. 

Local cadastral and assessment data, provided by the Shelby County 
Assessor of Property (SCAP), were used to overview physical charac
teristics and the built environment in terms of the structure of the 
neighborhoods and the structures that inhabit it. Many of the variables 
derived from the Assessor such as the number of living units (livunit), the 
total number of rooms (rmtot), or the total square footage of living area 
(sfla) were derived using the median value of all parcels within census 
tracts. Others were used to calculate a percentage of the total for the 
tract (e.g., pct_dev, percent developed parcels; pct_mf, percent multi
family parcels; pct_comm, percent commercial square footage). 

The SCAP data were also used to calculate a series of landscape 
metrics drawn from the landscape ecology literature to provide a deeper 
understanding of both the physical shape of land as well as the uses 
occurring on each parcel. Connections between urban form and envi
ronmental health have a long history in planning literature and can be 
traced back to early writings like Ian McHarg’s Design with Nature (1969) 
or Kevin Lynch’s Theory of Good City Form (1981). Despite the long 
history between urban form and the natural environment, assessing 
their relationship systematically has often been challenging (Alberti, 
1999). One of the earliest attempts to develop a systematic approach 
was Alberti et al (2001) who connected urban development patterns to 
ecological conditions. Alberti expanded on this work by then proposing 
a framework by which the impact of various urban development pat
terns on the environment could be tested (Alberti, 2005). In developing 
their framework for evaluating the ecological impacts of different urban 

development patterns, Alberti (2005) relied on a methodology proposed 
by Turner and Gardner (1991) which was also the basis for PyLandStats 
(Bosch, 2019), an open-source Python library built on top of the Sci
entific Python (SciPy) stack that we used to develop the measures used 
in this study. The majority of these measures were calculated based upon 
clusters of patches (i.e., land uses). Patches were defined by dissolving 
contiguous SCAP land use codes and clipping the resulting patches using 
census tract boundaries. Examples of landscape metrics include a mea
sure of land use diversity (cf. land use mix) such as a number of patches 
within each tract (number_of_patches) or land use configuration such as 
edge density (edge_density), and largest patch index (largest_patch_index). 

3.2. Methodology 

This study consists of three analyses to provide a visual and quan
titative understanding of urban change with construction and demoli
tion activity. The first analysis demonstrates the validity of net 
construction (hereafter, net construction will denote the new composite 
value described in section 3.2.1) as a dependent variable by examining 
temporal and geospatial heat maps against known local patterns. The 
second analysis uses a series of RF regression models to evaluate the 
predictive accuracy of net construction compared with independent 
models of construction and demolition. The final analysis utilizes feature 
importance scores, a by-product of random forest, to compare which 
variables appear most prominently and assess whether the roles of those 
variables in urban change differ from the findings in the literature. 

Data were analyzed using an iterative methodology leveraging a 
variety of open-source tools and programming languages (see Table A2 
in Appendix A). Derived from the cross-industry standard process for 
data mining (CRISP-DM) (Chapman et al., 2000) and the data analytics 
lifecycle model (DALM) (Song and Zhu, 2016), the workflow diagram 
(see Fig. A1 in Appendix A) demonstrates how the analysis progressed 
through each step and revealed the iterative process of analysis to 
achieve better results. 

3.2.1. Net construction 
Current literature that has utilized permit data has typically analyzed 

different types of development activity independently (Charles, 2014; 
Dye and McMillen, 2007; Lai and Kontokosta, 2019; Silverman et al., 
2015; Steenberg et al., 2019; Stevenson et al., 2010; Thomas, 2010; 
Weber et al., 2006). This approach makes it difficult to identify a cor
relation between construction and demolition. In reality, each con
struction project involves multiple permits (e.g., plumbing, electrical, 
etc.), whereas demolition needs a single permit. Over the 15-year period 
in the study area, construction permits occurred at a frequency that is 
over 16 times more than demolition. Thus, we retained the full count, 
not eliminating duplicate permits for a single project, by standardizing 
all permit counts using Min-Max Scaling formula as: 

x’
i =

xi − min(x)
max(x) − min(x)

(1) 

This resulted in a new range of values that fall between 0 and 1 for 
both demolition as well as construction and renovation which are 
treated as a composite value (see Table 2 for a summary). Net con
struction is defined as scaled values of demolition subtracted from 

Table 2 
Summary statistics. Summary statistics for permits before and after normalization.  

Variable Mean Std Min 25% 50% 75% Max Number Permits 

Construction/Renovation1  681.78  1,407.31  1.00  154.50  267.00  605.75  13,695.00 152,325 
Demolition  39.08  48.32  0.00  6.00  18.00  59.25  252.00 9,073 
Scaled Construction  0.05  0.10  0.00  0.01  0.02  0.04  1.00 – 
Scaled Demolition  0.16  0.19  0.00  0.02  0.07  0.24  1.00 – 
Net Construction  − 0.11  0.22  − 0.98  − 0.20  − 0.04  0.00  0.93 – 

1 represents the total number of construction and renovation permits within each census tract 
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construction and renovation. 

xi,net = xi,const − xi,demo (2)  

where xi,constis the scaled value for all construction and renovation per
mits and xi,demois the scaled value for all demolition permits and xi,netis 
the result net value. An increasing positive net construction value rep
resents a higher rate of construction while an increasing negative value 
represents higher rates of demolition relative to construction and 
renovation activity. 

To explore whether the new measure of net construction provides a 
more accurate depiction of neighborhood change, we examined the 
spatio-temporal pattern of net construction to evaluate emerging patterns 
against known spatial and temporal phenomena. The spatio-temporal 
heat map of net construction was created at a monthly time step. 

3.2.2. Random forest regression models 
RF’s ability to handle large, complex datasets efficiently coupled 

with its ability to handle nonlinear relationships among the variables 
made it an ideal method for this study. Additionally, the output of 
feature importance scores (section 3.2.3) presents an opportunity to 
discover new relationships that are not typically discussed in the urban 
studies literature and could potentially pave the way for new policy 
solutions. We ran three RF models using 122 independent variables 
(section 3.1.2) against three dependent variables of construction, de
molition, and the new composite measure of net construction. 

RF is a type of ensemble method which is a class of learning algo
rithm that utilizes an aggregation of several weak learners in order to 
develop a single model that outperforms each individual learner (Hastie 
et al., 2009). To train a forest, a random sample is drawn from the full 
dataset to build a single decision tree. These samples are returned to the 
full dataset so that they can be used in subsequent trees which con
tributes to RF’s ability to handle complexity. After selecting a sample for 
a tree, the algorithm then pulls a random assortment of features and 
begins testing a series of splits using each feature to find one that results 

in the lowest mean square error (MSE). Once the best feature is identi
fied, values that fall below that threshold are split to one side and the 
remaining values are placed on the other branch. The process repeats 
until all samples are exhausted or a predefined depth is reached. 

While there are a number of parameters that can be adjusted to refine 
the accuracy of a model during the training process, we focused on the 
number of trees (n_estimators) in the forest and the maximum number of 
features (max_features) that are tested when identifying the best way to 
split a tree in the Scikit-learn implementation. For other model param
eters such as the maximum depth of the tree (max_depth) we accepted 
the default value. To identify the best values for n_estimators and max_
features we utilized an iterative approach that permuted differing values 
for each parameter for the greatest stability and accuracy, resulting in 
using all of the features in conjunction with 400 trees. 

To assess model performance, an out-of-bag (OOB) score was 
calculated. As each tree is built, approximately one third of the samples 
are withheld as a test sample while the remaining samples are used to 
train the tree. At the completion of the tree, the test samples are then 
used to evaluate the model’s prediction accuracy and the OOB score is 
recorded so that the overall accuracy of the model can then be deter
mined. To provide a common frame of reference with other regression- 
based research, we also report Pearson’s r correlation (r) and Spear
man’s rank correlation (ρ) for the robustness tests with normally 
distributed values. We implemented RF using Scikit-learn, a Python- 
based machine learning library that is part of the Scientific Python 
stack (SciPy) (Pedregosa et al., 2011). 

3.2.3. Feature importance score 
A by-product of RF regression is feature importance scores which 

indicate the relative importance of each feature in determining the 
overall accuracy of the model. There are a variety of mechanisms used to 
calculate this score, but the Scikit-learn uses a Gini Importance score 
which is also referred to as the mean decrease in impurity and described 
by (Louppe, 2014) in the formula: 

Fig. 2. Temporal heat map. Temporal heat map of net construction from 2002 to 2016. A clear delineation before and after the recession of 2008 reveals a slowdown 
in new construction (green) and an increase in demolition (purple) following the housing crisis. (For interpretation of the references to colour in this figure legend, 
the reader is referred to the web version of this article.) 
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Imp(Xm) =
1

NT

∑

t

∑

t∈T :v(St)=Xm

p(t)Δi(st, t) (3)  

where T represents all of the nodes in a given tree, Xm a given variable, st, 
a given split, and p(t) the proportion of samples that are likely to reach 
node t. 

This value represents the weighted impurity for a particular variable 
averaged across all trees in the forest. Scikit-learn normalizes these 
values by dividing the importance value for each feature by the total 
importance value for all features. For ease of comprehension, the final 
scores calculated by the model were adjusted to fall between 0 and 100. 

Variables that occur towards the top of a tree more frequently are 
deemed more important because of their role in creating more accurate 
predictions. Feature importance values were compared for each of the 
three models to evaluate the similarities and differences in features that 
are identified as having the most influence on model accuracy. 

4. Results 

4.1. Net construction 

A temporal heat map of net construction at monthly time steps ex
hibits general downslope trends and few outliers verified by several 
important events (Fig. 2, see Fig. A2 in Appendix A for heat maps 
depicting independent counts of construction and demolition). Most 
notably, the stark transition from net positive construction to net 
negative in 2008 coincides with the housing crisis and the start of the 
Great Recession. An additional validation point occurs with seemingly 
anomalous rates of demolition in January to February of 2004 (Fig. 2). 
These apparent outliers follow a severe derecho, or straight-line wind
storm, in July of 2003 referred to locally as “Hurricane Elvis’’ which 
caused significant damage throughout the city and likely led to a spike in 

demolition as property owners sought to repair or rebuild. In addition to 
understanding the temporal patterns that emerge from net construction, 
its spatial distribution of high rates of net construction is in line with 
where the activity is actually occurring (Fig. 3). 

Spatial heat maps provide meaningful insight into how the county 
has changed over this 15-year span and demonstrates differing patterns 
in the years leading up to the housing crisis in 2008 and the years after. 
Prior to the housing crisis, construction and renovation activity was 
most pronounced in the eastern portion of the county, with a particular 
concentration around a major north–south corridor in the residential 
suburbs in 2005 and 2006. There was also a high level of construction 
activity in the western edge of the county, mainly around the central 
business district (CBD), although this activity is overlapping with a 
significant amount of demolition centered around the southern edge of 
the CBD. 

These patterns change in the years following the recession, particu
larly around 2010, when the development in the eastern portion of the 
county nearly disappears, and a greater amount of demolition within the 
core of the city becomes more apparent. Development seems to increase 
around 2011 through 2012 and much of the construction activity is 
concentrated around the middle of the county along an east–west axis. 
While there is some data in 2016, the lack of a complete record for the 
year is apparent in the sparse map for that year. 

With over 436 square miles, most of the county experienced net 
negative construction activity than net positive which had a total of 341 
total square miles. Predictably, the tracts that experienced more de
molition activity tended to have older housing stock with a median 
building age over 62 years (27 years for net positive), greater concen
trations of non-white population (89% versus 44% for net positive), and 
smaller parcel size (median 9,283 square feet versus 11,798 for net 
positive). 

Fig. 3. Spatial heat map. Spatial heat map of construction and demolition permits, 2002 to 2016. Greater concentrations of construction (green) on the eastern edge 
of the county and demolition in the core (purple) match local conditions. (For interpretation of the references to colour in this figure legend, the reader is referred to 
the web version of this article.) 
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4.2. Model accuracy 

The accuracy of the three models (hereafter, Net construction, 
Construction, and Demolition refer to RF models by the corresponding 
dependent variables used) varies widely with the best performance of 

the Net construction model, a maximum OOB accuracy value of 78%, 
followed by the Demolition model of 68% (Fig. 4). The lowest accuracy 
model was for Construction where the OOB accuracy was less than 10%. 
A scatter plot comparison between the actual versus predicted scores 
revealed the vast discrepancy between the various models (Fig. 4). 

Fig. 4. Model performance and accuracy. Model performance and accuracy for Net construction (a), Demolition (b), and Construction (c). The line graphs on the left 
reveal the out-of-bag (OOB), Spearman’s, and Pearson’s scores for each of the three models. The scatter plot on the right shows the actual value for each model on the 
y-axis and the predicted score for each on the x-axis along with the line of best fit. 
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Although the net construction values were fairly tightly coupled, espe
cially around the middle of the range where the score fell between − 0.2 
and 0.2, the Construction and Demolition values were much more 
dispersed. Predicted construction scores appeared to be relatively ac
curate at the low end of the range (i.e., between 0.0 and 0.05) but 
became much less predictable as the values increased. Such variation in 
accuracy is likely due to a disparity in the number of construction per
mits and the number of demolition permits which, when aggregated 
using census tract boundaries, had a standard deviation of over 1,400 
and 48 for respectively (Table 2). 

Similar to the OOB results, both Pearson’s r correlation (r) and 
Spearman’s rank correlation (ρ) showed the most accurate model of the 
three was Net construction where r was about 88% and ρ was about 
86%. The Demolition model was the second most accurate, but unlike 
Net construction, r was less accurate at approximately 81%, whereas ρ 
was almost 83%. Finally, just like the OOB scores, the worst performing 
model of the three was Construction where r was slightly below 44% and 
ρ was just below 39%. 

It is important to note that although the scores for both Spearman’s 

rank and Pearson’s r correlation were higher than the values reported by 
the OOB score for all three models, the OOB value still provides a more 
accurate account of how well the model performs. OOB is the result of 
testing unseen samples that are drawn from the full dataset against the 
predicted values and not simply a comparison between actual and pre
dicted values as is the case with Spearman and Pearson. 

4.3. Feature importance scores 

When the top ten most important features are examined in each of 
the three models (Table 3), the features with the greatest influence on 
Net construction represent an intersection of the top variables for Con
struction and Demolition which further demonstrates its utility as a 
comprehensive measure of urban change. Net construction and Demo
lition shared a total of six variables; percent of population with bache
lor’s degree (pct_bach), percent developed parcels (pct_dev), total percent 
at or below poverty (pct_pov_tot), percent unemployment (pct_unemp), 
and percent non-white population (pct_nonwh). Net construction and 
Construction shared two: distance to nearest community center 
(commcenter_dist), and total household income (hhinc). 

The fact that the Net construction model shared a number of features 
in common with both independent models demonstrates its ability to 
capture those characteristics that are unique to each of those models. 
However, the emergence of features that are exclusive to Net construc
tion also hints at its ability to identify characteristics that only appear 
when construction and demolition are studied simultaneously. For 
example, the most important feature for Net construction, the number of 
patches within each tract (number_of_patches), the landscape metric 
analogous to land use mix, did not appear at all for either Construction 
or Demolition. When visualized in detail for net construction, the number 
of patches demonstrated a contradictory pattern between net positive 
and net negative values (Fig. 5). 

The top features for Demolition and Construction were percent un
employed (pct_unemp) and average distance to nearest community cen
ter (commcenter_dist), respectively, which appeared as one of the top ten 
features for the Net construction model. This seems to further indicate 
that Net construction as a composite value not only was able to identify 
many of the influencing factors that relate to Construction and Demo
lition, but also able to capture additional characteristics that may only 
result when construction and demolition activity are analyzed 
simultaneously. 

Table 3 
Feature importance scores. Feature importance scores derived from the Net construction, Demolition, and Construction random forest models (10 highest values for 
each model in bold, NAICS: North American Industrial Classification System).  

Category Variable Description Net 
Importance 

Demo 
Importance 

Const 
Importance 

Land and housing number_of_patches Number of patches within zone  100.00  0.00  0.00 
pct_hu_vcnt Percent vacant housing  39.63  31.58  0.48 
pct_dev Percent of developed parcels  26.75  76.60  2.63 

Demographics pct_nonwh Percent non-white population  75.66  83.82  1.79 
pct_bach Percent with Bachelor’s degree  49.47  57.29  10.00 

Accessibility cmgrdn_dist Average distance to nearest community garden for all parcels within a 
Census tract  

43.65  25.75  62.91 

commcenter_dist Average distance to nearest community center for all parcels within a 
Census tract  

33.68  4.20  100.00 

pol_dist Distance to nearest police station  11.68  1.50  63.13 
pvt_dist Distance to nearest private school  5.17  1.64  37.92 

Financial pct_pov_tot Total percent of population below poverty  32.79  22.75  2.47 
hhinc Median household income  25.64  6.00  17.88 
mdngrrent Median gross rent  3.87  2.62  17.48 
foreclose Foreclosures  4.64  13.72  19.34 

Employment pct_unemp Percent unemployed  79.46  100.00  1.92 
pct_manuf Businesses by Sector: Percent of jobs in Manufacturing (NAICS 31–33)  4.02  17.13  2.21 
pct_ag Businesses by Sector: Percent of jobs in Agriculture and Forestry (NAICS 11)  3.51  0.21  33.93 

Transportation mata_stop_sqmi Transit stops per square mile  13.40  33.28  2.04 
mmcnxpsmi Multimodal connections per square mile  9.17  2.65  16.17 
tt30more Total working age population whose travel time to work is 30 min or more  5.30  1.99  18.12  

Fig. 5. Number of patches scatter plot. Scatter plot showing net construction 
value (y-axis) and number of patches (x-axis) with line of best fit for net positive 
(green) and net negative values (purple). 
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There was less intersection between the two independent models (i. 
e., Construction and Demolition) which only share two variables in 
common, average distance to community gardens (cmgrdn_dist) and 
foreclosures (foreclose). Another notable distinction between the inde
pendent models were the categories that contain the most important 
features. For Construction, the four most important features, average 
distance to nearest community center (commcenter_dist), distance to 
nearest police station (pol_dist), average distance to nearest community 
garden (cmgrdn_dist), and distance to nearest private school (pvt_dist), all 
relate to various measures of Accessibility while features from Demoli
tion showed importance within the category of Land and housing and 
Demographics. 

5. Discussion 

This discussion contextualizes the results of this study within the 
current literature while also connecting the methodology and data to 
help inform and guide policy. In closing, this section will identify current 
gaps in the research and discuss future research opportunities. 

5.1. Findings and contributions 

This research has contributed to the debate surrounding community 
change in a number of ways. First, the effectiveness of net construction in 
assessing community change suggests that this measure is a practical 
indicator as an outcome variable to model urban development, 
providing a better understanding of the built environment’s impact on 
community change. Not only did net construction provide an accurate 
depiction of urban change before and after the 2008 recession, but it also 
demonstrated better predictive capability with RF models when 
compared against the models with construction or demolition alone. 

Another contribution is in the use of a supervised learning method to 

model urban change. RF regression was able to incorporate a wide va
riety of relationships and data types, helping to capture some of the 
complexity that drives community change. One advantage of this 
approach was the ability to incorporate a multi-disciplinary complement 
of input such as socio-economic variables, urban form characteristics, 
and landscape metrics into a single analysis to compare which of them 
are most critical through feature importance scores. The scores pro
duced by the three models, Construction, Demolition, and Net con
struction, showed both similarities and differences with previous 
studies. 

When Construction and Demolition were modeled independently, 
this research found similarities with studies such as Knaap et al. (2007) 
and Lowry and Lowry (2014), or Yin and Silverman (2015), which 
emphasized the role of density, proximity, or street networks in char
acterizing a community’s urban form. However, the presence of 
numerous demographic and employment variables like percent unem
ployment (pct_unemp), percent non-white population (pct_nonwh), and 
percent with bachelor degrees (pct_bach) at the top of the importance list 
for Demolition demarks a notable departure from previous studies that 
have found little predictive capability between socio-economic variables 
and demolition (Hollander et al., 2019; Weber et al., 2006). While a 
more nuanced treatment of demolition types could help explain this 
discrepancy (Paredes and Skidmore, 2017), it is also conceivable that 
the use of random forest might help identify more complex influences 
that have not previously been discussed. 

The presence of distance to community gardens (cmgrdn_dist) at the 
top of the list of important variables for all three models lends further 
support to the potential for ML models like RF to discover hidden in
fluence over urban change. While there is ample discussion on the 
connection between abandonment, vacant lots, and community gardens 
(Anderson & Minor, 2017; Chin, 2021; Gobster et al., 2020), the fact that 
their existence or absence carries such significant influence when 

Fig. A1. Workflow diagram. Data were collected, processed, and analyzed in an iterative workflow. Although the analysis progressed in a linear fashion as rep
resented by the solid arrows, previous steps would be revisited as new variables were added or after modifying existing variables (represented with dashed lines). 
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predicting Construction or Net construction values hints at the larger 
capability that ML offers for analyzing pressing urban challenges. 

Of greater significance, however, is the ability of net construction to 
highlight the underlying characteristics of areas experiencing greater 
construction or demolition simultaneously. As discussed previously, 
community gardens correlate to variables like vacancy, so it stands to 

reason that they would appear in areas with greater rates of demolition. 
Whereas proximity to community gardens is important for areas with 
net negative scores, distance away from community gardens is impor
tant for areas with positive scores which would also be true for other 
location measures as well. These differences could be attributed to a 
contrast in land development patterns between the two locations. The 

Fig. A2. Temporal heat maps for independent counts of construction (green) and demolition (purple) permits.  
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Table A1 
Variable sources and descriptions.  

U.S. Census 
Bureau; 
American 
Community 
Survey, 
2012–2016 

Average number 
of hours worked 
per week 

Percent with 
Bachelor’s degree 

Percent 
unemployed 

Median 
household 
income 

Percent vacant 
housing 

Percent with Less 
than 1 year college 

Dwelling units 
per acre 

Percent in labor 
force 

Percent with More 
than 1 year, no 
degree 

Median years at 
current 
residence 

Percent with 
Master’s degree 

Total population 
per square mile 

Median gross 
rent 

% receiving 
Medicaid 

Total working age 
population whose 
primary mode of 
travel to work is 
bicycle 

Median home 
price 

Percent with 
Diploma 

Total working age 
population whose 
primary mode of 
travel to work is 
single-occupancy 
automobile 

Percent 
population 
under 19 years 
of age 

Percent non-white 
population 

Total working age 
population whose 
primary mode of 
travel to work is 
public transit 

Percent 
population 20 to 
24 

Percent owner- 
occupied housing 

Total working age 
population whose 
primary mode of 
travel to work is 
walking 

Percent 
population 25 to 
34 

Percent with 
Doctorate degree 

Total working age 
population whose 
travel time to work 
is 15 to 19 min 

Percent 
population 35 to 
49 

Total percent of 
population below 
poverty 

Total working age 
population whose 
travel time to work 
is 15 min or less 

Percent 
population 50 to 
66 

Percent with 
Professional 
degree 

Total working age 
population whose 
travel time to work 
is 30 min or more 

Percent 
population 67 
and over 

Percent renter- 
occupied housing  

U.S. Census 
Bureau, 
Longitudinal 
Employer- 
Householder 
Dynamics 

Percent of jobs 
in Agriculture 
and Forestry 
(NAICS 11) 

Percent of jobs in 
Health Care 
(NAICS 62) 

Percent of jobs in 
Public 
Administration 
(NAICS 92) 

Percent of jobs 
in Arts (NAICS 
71) 

Percent of jobs in 
Health Care 
(NAICS 62) 

Percent of jobs in 
Real Estate (NAICS 
53) 

Percent of jobs 
in Arts (NAICS 
71) 

Percent of jobs in 
Information 
(NAICS 51) 

Percent of jobs in 
Retail (NAICS 44- 
45) 

Percent of jobs 
in retail, service, 
or other 
commercial 
industries 

Percent of low 
and moderate 
income jobs 

Percent of jobs in 
Transportation 
(NAICS 48-49) 

Percent of jobs 
in Construction 
(NAICS 23) 

Percent of jobs in 
Manufacturing 
(NAICS 31-33) 

Percent of jobs in 
Utilities (NAICS 
22) 

Percent of jobs 
in Education 
(NAICS 61) 

Percent of jobs in 
Management 
(NAICS 55) 

Percent of jobs in 
Waste 
Management 
(NAICS 56) 

Percent of jobs 
in Education 
(NAICS 61) 

Percent of jobs in 
Mining (NAICS 
21) 

Percent of jobs in 
Wholesale (NAICS 
42) 

Percent of jobs 
in Finance 
(NAICS 52) 

Percent of jobs in 
Other Services 
(NAICS 81)   

Table A1 (continued ) 

Percent of jobs 
in Food Services 
(NAICS 72) 

Percent of jobs in 
Professional 
Services (NAICS 
54)  

2004, 2017 Shelby 
County 
Assessor’s 
Certified Roll 

Percent change 
in property 
values 
2004–2017 

Total number of 
living units 

Median number of 
feet for residential 
parcel perimeter 

Average age of 
all structures 

Number of 
patches within 
zone 

Median total 
number of rooms 
in structure  
Table A1 

Average age 
commercial 
buildings 

Median parcel 
acreage 

Median square 
footage 
commercial 
structures 

Average age 
single family 
homes 

Number of 
patches per unit of 
area 

Median square 
footage total living 
area for residential 
structures 

Probability that 
two random 
adjacent cells 
are from the 
same class 

Percent 
commercial 
square footage 

Shannon Diversity 
index 

Measure of 
diversity using 
Simpson 
Diversity Index 

Percent of 
developed parcels 

Total edge length 

Edge length per 
area unit 

Percent 
multifamily 
housing  

Measure of 
“edginess”, 
standardized 
and adjusted for 
landscape size 

Percent vacant 
parcels  

Proportion of 
total landscape 
comprised by 
largest patch   

Landscape Metrics Contagion Edge density Landscape patch 
index 

Largest patch 
index 

Number of 
patches 

Patch density 

Shannon 
diversity index 

Total edge  

Center for Applied 
Earth Science 
and Engineering 
Research, 
University of 
Memphis 

Average 
distance to 
nearest 
childcare center 
for all parcels 
within a census 
tract 

Average distance 
to nearest library 
for all parcels 
within a census 
tract 

Percent coverage 
tree canopy 

Average 
distance to 
nearest 
community 
center for all 
parcels within a 
census tract 

Distance to 
nearest middle 
school 

Percent 
impervious surface 

Average 
distance to 
nearest 
elementary 
school for all 
parcels within a 
census tract 

Multimodal 
connections per 
square mile 

Distance to nearest 
police station 

Distance to 
nearest fire 
station 

Total square miles 
of open space 

Distance to nearest 
private school 

Average 
distance to 
nearest high 
school for all 
parcels within a 
census tract 

Distance to 
nearest park 

Percent of streets 
with sidewalks 

(continued on next page) 
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Table A1 (continued ) 

Average 
distance to 
nearest hospital 
for all parcels 
within a census 
tract 

Total number of 
parks per capita  

Memphis Area 
Transit 
Authority 

Miles of MATA 
routes per 
square mile 

Transit stops per 
square mile 

Bus ridership - 
Number 
passengers on per 
square mile 

U.S. Green 
Building Council 

Number of 
certified green 
buildings per 
square mile 

Number of street 
intersections per 
square mile  

Center for 
Neighborhood 
Technology, 
Housing +
Transportation 
Index 

Number of cars 
per household 

Employment Mix 
Index (Low 0- 
High 100) 

Total annual 
vehicle miles 
traveled 

Memphis and 
Shelby County 
Office of 
Sustainability, 
Mid-South 
Regional 
Greenprint 

Bicycle 
friendliness 
index based on a 
combination of 
variables 
including low 
speed streets, 
completed bike 
lanes and 
greenways, and 
multiple street 
connections (0 
= unfriendly to 
238 = friendly) 

Job access (0 =
low accessibility 
to 10 = high 
accessibility) 

Walkability index 
based upon the 
presence or 
absence and 
quality of 
footpaths and 
sidewalks, traffic 
and road 
conditions, land 
use patterns, 
building 
accessibility, and 
safety. (0 = low 
walkability to 60 
= high 
walkability) 

Average 
distance to 
nearest 
community 
garden for all 
parcels within a 
census tract 

Average distance 
to nearest farmers 
market for all 
parcels within a 
census tract  

Memphis Urban 
Area 
Metropolitan 
Planning 
Organization 

Total miles of 
bicycle lanes per 
square mile 

Greenways 
(Existing and 
Proposed) - Miles 
per square mile  

National Highway 
Traffic Safety 
Administration 
Fatality Analysis 
Reporting 
System 

Number of 
pedestrian and 
bicycle injuries 
per capita   

Shelby County 
Regional GIS 
(ReGIS) 

Total number of 
foreclosures   

U.S. Department of 
Housing and 
Urban 
Development, 
Housing 
Affordability 
Data System 

Number of 
affordable 
housing units 
within 0.5 mile 
of green space 

Percent of 
affordable 
housing stock 

Transit 
accessibility (0 =
low accessibility to 
100 = high 
accessibility) 

U.S. 
Environmental 
Protection 
Agency, 
Uniform 
Resource 
Locator 

Number of 
brownfield sites 
per capita   

U.S. Geological 
Survey, National 
Hydrography 
Dataset 

Wetland acres 
per square mile    

Table A2 
Relevant tools. A variety of open source tools were selected to test different 
scenarios by creating terminal-based commands that supported running the 
same command repeatedly with different input, evaluating the output for 
differences.  

Tool Description Use(s) Reference 

Python Open source 
programming language 
commonly used 
throughout data science 
and machine learning. 

- Data collection 
- Data processing 
- General 

Python Software 
Foundation, 
2020 

Pandas A data manipulation 
library that supports 
vectorized data 
processing, value 
filtering, plotting, and 
statistical functions that 
make data exploration 
and analysis quick and 
efficient. 

- Exploratory 
analysis 
- Visualization 
- Data manipulation 

McKinney, 2010 

Matplotlib Visualization library 
based upon Matlab that 
supports scientific 
plotting through a 
customizable API 
(application 
programming interface) 

- Data visualization Hunter, 2007 

Seaborn An additional 
visualization library 
built on top of 
Matplotlib that 
simplifies some of the 
more complicated 
classes within its API 

- Data visualization Waskom, 2020 

Numpy The foundation for most 
libraries within the 
Python Scientific stack 
(SciPy) with optimized 
numerical data 
structures like N- 
dimensional arrays 
(ndarrays) and a range 
of statistical methods 

- Data analysis 
- Data manipulation 
- Basic statistical 
operations 

van der Walt 
et al., 2011 

Scikit-Learn A Python-based library 
for machine learning 
and artificial 
intelligence. In addition 
to a range of ML 
algorithm 
implementations, it also 
contains numerous 
methods for 
preprocessing and data 
validation 

- Machine learning 
- Data 
preprocessing 

Pedregosa et al., 
2011 

SQL 
Alchemy 

A Python-based library 
for connecting to, 
manipulating, and 
managing relational 
databases 

- Database 
connection and 
maintenance 
- Executing queries 
and extracting data 

Bayer, 2020 

PyLandStats Python package for 
calculating a range of 
landscape metrics 

- Generating 
landscape metrics 

Bosch, 2019 

PostgreSQL Open source database 
management system 
(DBMS) 

- Data maintenance 
- Data processing 
- Analysis 

The PostgreSQL 
Global 
Development 
Group, 2020 

PostGIS Open source extension 
for PostgreSQL for 
geospatial data 
management and 
processing. 

- Merging 
geospatial and 
tabular data 
- Geospatial 
analysis 
- Data processing 

PostGIS, 2020 

QGIS Open source geospatial 
information system. 

- Geospatial 
visualization 
- Geospatial 
analysis 

Open Source 
Geospatial 
Foundation 
Project, 2020 

Click Ronacher, 2014 

(continued on next page) 
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former tends to occur in more urban locations and the latter in more 
suburban areas. A defining characteristic of these suburban tracts is a 
greater distance to both services and amenities, which is further sup
ported by two transportation variables in the list of top ten features for 
the Construction model. Accounting for net construction, our modeling 
approach can capture this inverse relationship while the independent 
models are not. 

This same inverse relationship can be seen with socio-economic 
variables as well. For example, areas that experienced net negative 
construction had a median percentage of non-white population of over 
89% and a median percentage of the population with a bachelor’s de
gree of 9%. In contrast, tracts with net positive construction had median 
values of 42% and 25% respectively. So, although demographic vari
ables are not featured prominently in the Construction model, incor
porating demolition into the analysis accentuates their importance. This 
finding suggests that the demolition or construction model alone does 
not serve as an accurate analysis tool to make an informed decision. 
Instead, the net construction model can be used to improve policy 
effectiveness as we illustrate in the next section. 

Landscape metrics, which have been gaining in application in urban 
morphology as better data and computational capabilities become 
available (Angel et al., 2016; Taubenböck et al., 2019; Lemoine-Rodrí
guez et al., 2020), warrant further consideration. In particular, num
ber_of_patches, the top feature for Net construction, relates to the 
quantity and diversity of adjacent land uses analogous to land use mix in 
urban study literature (Herold et al., 2003; Song et al., 2013). Originally 
drawn from landscape ecology, the concept of a patch typically refers to 
“communities or species assemblages surrounded by a matrix with a 
dissimilar community structure or composition (Godron, 1981, p. 734).” 
This concept has been extended to the urban environment by defining 
patches as collections of contiguous land with similar land uses and has 
been used to evaluate urban sprawl and fragmentation (Abrantes et al., 
2019). Some of the earliest applications of landscape metrics within 
urban context can be found in transportation literature, most notably 
Hess et al. (2001) who found that measures like the number of patches 
provided a detailed mechanism for studying land use mix. In addition, 
patches have also been found to play a fundamental role in urban pro
ductivity and healthy residential development (Jia et al., 2019). 

The relationship between the number of patches and net construction 
reveals a near mirror image between rates of positive and negative ac
tivity that increase and decrease respectively as the number of patches 
go up (Fig. 5). This seemingly contradictory pattern resembles the 
SLOSS (single large or several small) debate that once dominated con
servation journals until Soulé and Simberloff (1986) advocated for both 
“bigness” and “multiplicity”. It is the balance between a habitat’s size 
and the complexity of its shape that is essential for determining how 
suitable it is for a habitat (Clifton et al., 2008). In the case of this study, 
both the size and shape of a parcel for any given land use seem to play a 
pivotal role in determining the level of either construction or 
demolition. 

5.2. Policy implications 

Net construction presents municipal leaders with an effective mech
anism by which to measure and assess neighborhood stability or resil
ience. While net construction offers insight into neighborhoods that may 

be experiencing higher construction or demolition activity rates, the 
neighborhoods that hover around the net neutral range also warrant 
careful consideration. As net construction represents the relative differ
ence between construction and demolition activities, scores that fall 
close to zero reflect locations where construction and demolition occur 
at roughly equal rates. Furthermore, by calculating a composite net 
construction score over a 15-year period that includes a major economic 
catastrophe such as the 2008 housing crisis, we were able to identify 
neighborhoods that remained stable throughout the crisis or rebounded 
in relatively short order. These “net neutral” neighborhoods embody 
Meerow et al. (2016)’s definition of urban resilience in their ability “to 
maintain or rapidly return to desired functions in the face of a distur
bance” (p.45) and provide municipalities with a potential case study 
into the characteristics that may be critical to building healthy and 
resilient communities. Additionally, the concept of a net neutral 
neighborhood offers another perspective for a deeper understanding of 
the relationship between urban areas and “socio-economic-ecological” 
processes. Because these neighborhoods are identified using a routine 
dataset maintained by most municipal jurisdictions, it allows for greater 
comparisons from one region to another (Sapena et al., 2020). 

One area of policy that could greatly benefit from an access to a 
diverse and rich set of data relates to demolitions. Cities typically 
regulate how structures should be demolished, but they often lack any 
policy to strategically guide or steer that demolition. In its most recent 
comprehensive plan, the City of Memphis discourages the removal of 
historically significant structures in order to encourage good design 
characteristics that are contextually relevant to the surrounding com
munity (City of Memphis and Memphis and Shelby County Division of 
Planning and Development, 2019). But Mallach (2012) argued for a 
more deliberate and targeted approach to address a range of deleterious 
effects caused by vacant and abandoned structures. Incorporating a 
comprehensive body of data could help struggling cities develop guiding 
principles that could help balance these approaches while simulta
neously promoting to ease the downward pressure on property values 
caused by dilapidated properties. 

The challenges caused by the lack of reliable data inside city hall are 
amplified when the focus expands to include outside entities such as 
universities, non-profits, or private businesses. This study demonstrated 
how a fairly common and routine dataset collected by nearly all gov
ernments can be re-purposed to discover hidden relationships or high
light unseen characteristics. Increasing the transparency of local 
government, especially with regard to data and business processes, has 
been shown to pay dividends financially. Smart Procure, a database 
provider that collects and disseminates local and state purchasing data, 
initially relied on Freedom of Information Act (FOIA) requests to obtain 
routine data relating to what governments bought and how much they 
spent on the acquisition. A simple idea that leverages routine public 
information not only helped build a highly successful technology com
pany but has also helped local governments improve their purchasing 
programs by increasing transparency throughout the process (Goldstein 
and Dyson, 2013). 

5.3. Future research opportunities 

The results of this study have shown some of the underlying char
acteristics that contribute to higher rates of development activity in one 
neighborhood versus another. However, there remain a few questions 
beyond the scope of this effort that could help improve our overall un
derstanding of the complex nature of urban change. 

The first relates to time and the dynamic change that characterizes 
contemporary urban development whereby the physical environment is 
continuously modified to fit the needs and demands of current residents. 
Although the permit data covered a 15-year time frame that occurred 
both before and after the housing crisis of 2008, the analysis largely 
treated these data as though they were static and represented a snapshot 
in time. While the accuracy achieved by the models demonstrate the 

Table A2 (continued ) 

Tool Description Use(s) Reference 

A Python packaged 
used for generating 
command line 
interfaces (CLI) from 
Python modules. 

- Create command 
line interface (CLI) 
for iterative 
approach for 
analysis and 
visualization  
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feasibility of the method, it is possible that an approach that in
corporates time into the analysis would only increase the accuracy of the 
predictions. By aggregating the permit data into time blocks that overlap 
ACS sample years, it would be possible to extract greater detail around 
the specific characteristics that contribute to development activity. A 
more rigorous temporal approach with a more granular exploration may 
offer greater insight to understand the fluctuation of permitting over 
time along with how the underlying factors shifted. 

Another area for further investigation is in the aggregating unit used 
for the analysis. Given the characteristics built into census tract 
boundaries, they were a logical unit for grouping non-census derived 
variables for summarization. One limitation to this approach, however, 
is that the resulting sample size is relatively low. Although RF models 
are able to handle low sample sizes with relatively high-dimensional 
feature spaces, the use of another aggregating unit like census block 
groups might offer greater detail. 

Another approach to increasing sample size would be to expand the 
analysis beyond Memphis and Shelby County to incorporate multiple 
cities into the modeling frameworks. Two main key data we employed in 
the study, building permits and parcel data, are standard data sources 
that all municipal governments collect. Expanding this study to include 
additional cities would both increase the available sample size while 
simultaneously testing whether there are regional differences in factors 
that influence construction and demolition activity. Though there are 
bound to be regional differences in regard to some variables, we would 
propose that some of the key urban form measures likely remain un
changed (Lemoine-Rodríguez et al., 2020). 

6. Conclusion 

This research explored the use of net construction as a standardized 
measure for urban development using construction, renovation, and 
demolition permit data and identified the factors that influence com
munity change. Both temporal and spatial visualizations showed 
promise in understanding community change and provided a more ho
listic view on how the built environment affects development patterns. 
Expanding upon this, we utilized RF regression as a method capable of 
handling a broad array of relationships and data types. RF empowered 
the analysis of the underlying characteristics that were most closely 
associated with community change indicated by net construction. Ques
tions persist as modeling has its inherent limitations, and some deter
mining factors of urban change are likely not incorporated into our 
model. Even with a complete set of data inputs, algorithms alone will not 
predict all urban changes. As an example, local politics and planning 
policies can play a key role in influencing development practices. 

Many urban problems remain unsolvable using traditional analytic 
techniques but may, in fact, have a solution when approached from 
another perspective; the expansion of ML into urban geography presents 
such an opportunity. By increasing the volume and enriching the di
versity of data fed into new models, the potential to discover new pat
terns or relationships will inevitably follow. However, despite the 
potential that ML offers for addressing some of the complex challenges 
that confront cities, it is also important to acknowledge the risk that 
comes with any technology that experiences wider adoption beyond its 
scientific origin (Janssen and Kuk, 2016). While numerous platforms are 
lowering barriers to ML, an incomplete understanding of the implica
tions or assumptions built into an algorithm can lead to unintended 
consequences. 
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