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Moderate Resolution Imaging Spectroradiometer (MODIS) estimates of gross pri-
mary production (GPP) were validated using field-based estimates of net primary
production from the Forest Inventory and Analysis (FIA) Program across the
eastern USA. A total of 54 969 MODIS pixels and co-located FIA plots were anal-
ysed to validate MODIS GPP estimates. We used a data resolution of individual
MODIS pixels and co-located FIA plots, and used detailed pixel- and plot-spe-
cific attributes by applying screening variables (SVs) to assess conditions under
which MODIS GPP was most strongly validated. Eight SVs were used to test six
hypotheses about the conditions under which MODIS GPP would be most strongly
validated. The six hypotheses addressed were (1) MODIS pixel quality checks, (2)
FIA plot quality checks, (3) land-cover classification comparability of co-located
MODIS pixels and FIA plots, (4) FIA plot homogeneity, (5) FIA plot tree density
and (6) MODIS seasonal variation. SVs were assessed in terms of trade-off between
improved relations and reduced number of samples. MODIS seasonal variation
and FIA plot tree density were the two most efficient SVs, followed by basic qual-
ity checks for each data set. Sequential application of SVs indicated that combined
usage of five of the eight SVs provided an efficient data set of 17 090 co-located
MODIS pixels and FIA plots, which raised the Pearson correlation coefficient from
0.01 for the Complete data set of 54 969 plots to 0.48 for this screened subset of
17 090 plots. The screened subset of plots exhibited good representation of the
Complete data set in terms of species abundance, plot distribution and mean pro-
ductivity. We conclude that the application of SVs provides a useful approach to
ensure compatibility of two data sets for broad-scale forest carbon budget analysis
and monitoring.

1. Introduction

Monitoring of the forest carbon cycle over large areas provides valuable information
for a variety of applications including managing wood supply for the forest indus-
try (Bettinger et al. 2009), balancing the carbon budget (Turner et al. 1995, Birdsey
1996) and identifying the imprint of climate change (Nemani et al. 2003, Nakawatase
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MODIS GPP validation and FIA plot-scale NPP measures 6123

and Peterson 2006). The carbon cycle in vegetation has three major components:
gross primary production (GPP), autotrophic respiration (AR) and net primary pro-
duction (NPP), which is equal to GPP minus AR (DeLucia et al. 2007). The two
basic approaches to monitoring the carbon cycle are field-based (Clark et al. 2001)
and remotely sensed (Prince and Goward 1995) approaches. Field-based approaches
have the advantage of accurate measures of NPP for the measured plots and the dis-
advantage of the spatial coverage being limited to just the plots, whereas remotely
sensed approaches have the advantage of spatially extensive predictions of GPP and
the disadvantage of an unknown prediction accuracy for different environments.

In terms of field-based monitoring, many countries have a national forest inventory
that uses field methods, such as the Forest Inventory and Analysis (FIA) Program in
the USA (McRoberts et al. 2005a), the Finnish National Forest Inventory (Tomppo
et al. 2008), the Canadian Forest Inventory (Gillis et al. 2005) and the more loosely
organized Russian Forest Inventory (Houghton et al. 2007). The US FIA Program
adopted a standardized nationwide inventory methodology in 1998 that enables spa-
tially unbiased and timely monitoring of the amount and health of the nation’s
forestland (Bechtold and Patterson 2005). This FIA annual inventory has replaced
and greatly improved upon the less frequent periodic inventory, which used a variety
of survey standards that may have created geographic variations in the estimates of
tree growth rates. The annual inventory collects tree-specific information, such as tree
diameter, on over three million trees in a network of over 100 000 permanent ground
plots using a 5 year cycle. This tree-specific information can be used to calculate plot-
level changes in wood volume. Additional plot-level data such as forest type and stand
density are collected. Examples of the many uses of FIA plot-level data to monitor
forest conditions across the eastern USA include mapping of county-level produc-
tion and mortality of woody biomass (Brown and Schroeder 1999), and evaluation of
species range changes (Murphy et al. 2010).

The type of remotely sensed imagery chosen for monitoring forest growth
requires a compromise between spatial extent and spatial resolution (Lu 2006) – for
example, compromise between the broad extent but coarse resolution of the
Moderate Resolution Imaging Spectroradiometer (MODIS) and Advanced Very
High Resolution Radiometer (AVHRR) and compromise between the small extent
but finer resolution of Landsat, the Advanced Spaceborne Thermal Emission and
Reflection Radiometer (ASTER) and Système Pour l’Observation de la Terre (SPOT).
MODIS has a great advantage in monitoring forest conditions, especially for sub-
continental and larger areas, due to its spatial extent and frequent acquisition (Lu
2006, Muukkonen and Heiskanen 2007). MODIS imagery provides a standard suite of
8 day interval, 1 km spatial resolution global products including leaf area index (LAI;
Yang et al. 2006), fraction of photosynthetic active radiation (f PAR; Steinberg and
Goetz 2009), land-cover classification (Lotsch et al. 2003) and GPP (Zhao et al. 2005,
Potter et al. 2007). A MODIS NPP product is created at the University of Montana
as the difference between the annual sum of daily MODIS GPP and the modelled
annual plant respiration. But because the modelling of respiration has not been well
validated, these MODIS NPP estimates are not publicly available (Turner et al. 2005).

Efforts have been made to calibrate and validate the MODIS predictions of GPP
in the USA through comparisons with flux tower sites, with process-based ecosys-
tem models and with field-based forest inventory sites. The ground-based flux tower
site approach (Law et al. 2000, Turner et al. 2003, 2005, Heinsch et al. 2006, Xiao
et al. 2008) has provided information that is necessary for calibration of the MODIS
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6124 Y. Kwon and C. P. S. Larsen

algorithms, but can be undertaken in only a few of the many plant community types
present in the USA that have measurement towers. Process-based models such as
Physiological Principles Predicting Growth (3-PG) make predictions of GPP for many
other forest types in the USA, and although these have been used to validate pre-
dictions made by MODIS from areas ranging in size from county to US states (Law
et al. 2000, Landsberg et al. 2001, Nightingale et al. 2007), since the MODIS and
3-PG models use the same radiation input data, the two data sets are not completely
independent and, thus, these validations are not robust. Studies that have compared
MODIS estimates with FIA measurements at the scale of US states (Zhang and
Kondragunta 2006) have been limited in the variety of environments considered as
they averaged together the unique environments present in individual FIA plots and
MODIS pixels. Examination of plot-level FIA forest variables allows the characteri-
zation of stand-level forest dynamics necessary for management decisions (McRoberts
2008). The use of field-based growth data is valuable for two reasons: first, the MODIS
and inventory data are independent of each other and, second, field data allow the
validation of MODIS predictions across many different plant community types and
biophysical conditions (Zhang and Kondragunta 2006, Muukkonen and Heiskanen
2007).

Validation of MODIS GPP predictions using FIA NPP data has been challen-
ging, however, mainly because of the inherent scaling mismatch between the two data
sets (Morisette et al. 2002, Cohen et al. 2003, Lu 2006). The mismatch is that while
MODIS provides its data in a spatially contiguous square grid with a 1 km2 resolu-
tion, FIA data typically consist of one plot for every 6000 acres (24.3 km2), with that
plot itself consisting of four 24 ft radius subplots, which together have a total area of
1/6 acre (0.0041 km2; Bechtold and Patterson 2005). Minnesota, Wisconsin, Michigan
and Maine have a sampling intensity that is approximately two to three times higher
than that of the other states, but the scaling mismatch remains. Three approaches that
might be taken to deal with this scaling mismatch, which limits the ability to validate
MODIS predictions using FIA measurements, are outlined below.

One popular approach to overcome the mismatch, useful for study areas that cover
several hundred square kilometres, is to use intermediate ancillary data that bridge
the coarse-resolution MODIS pixels and the fine-resolution FIA plots. For example,
Blackard et al. (2008) developed a spatially explicit forest biomass map that covered 65
ecologically segmented mapping zones across the USA. In their tree-based mapping
model, FIA plot-level biomass measurements were modelled with several predictor
variables including MODIS-derived vegetation index, land cover from intermedi-
ate resolution of Landsat data and topographic and climatic data. Muukkonen and
Heiskanen (2007) and Zheng et al. (2007, 2008) also estimated aboveground biomass
by using high-resolution satellite imagery to integrate coarse-resolution MODIS data
with field-based national inventory data. The second approach to dealing with the
mismatch is to aggregate both data sets to a larger area. For example, Zhang and
Kondragunta (2006) compared the estimates of aboveground biomass using a com-
bination of MODIS data and allometric models with FIA data averaged for each of
the contiguous 48 US states. Although they obtained good agreement between the
data sets, the spatial resolution of the whole US states does not tell us whether this
validation is equally strong for smaller areas that contain different forest types and
environments.

The third approach to dealing with the spatial mismatch is to maintain the plot- and
pixel-scale observations and to use plot and pixel attributes to screen out co-located
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pixels and plots that are not comparable in characteristics or quality. Since the FIA
sampling procedures were designed to meet the mandated error standards at the level
of the US state, it is believed that the reliability of the estimates decreases for smaller
areas (Bechtold and Patterson 2005). Phillips et al. (2000) suggested that although the
total error could be decreased by tallying a large number of trees, it could also be done
by examining possible error sources at the scale of individual trees and plots. MODIS
also has sensor error due to sensitivity to atmospheric conditions and a suggested
problem of band saturation (Myneni et al. 2002). The utilization of plot-level FIA
attributes has rarely been addressed in the use of FIA data to estimate forest NPP,
although Jenkins et al. (2001) used data quality criteria and Powell et al. (2010) used
‘single condition’ plots as a proxy for homogeneous forest areas to minimize potential
modelling errors. Although these screening criteria were used, it was not shown how
much their use influenced the results.

The aforementioned studies that compared MODIS GPP and FIA NPP implic-
itly assumed that autotrophic respiration (AR) is relatively stable and independent
of ecosystem type. This perspective has been supported by some research that sug-
gests that AR is a constant proportion of GPP (Potter et al. 1993, Waring et al. 1998,
Reich et al. 2006). However, if AR is a varying fraction of GPP as suggested by other
researchers (Chapin et al. 2002, Xiao et al. 2003, DeLucia et al. 2007), then their find-
ings may contain small errors. Although the correlation approach that we use in this
study does assume that AR is a constant proportion of GPP, we will map the residuals
of those relations to assess whether the proportion varies geographically.

The overall objective of this research is to validate MODIS pixel-level predictions
of GPP by assessing their statistical relations with co-located FIA plot-level estimates
of NPP across the eastern USA. The screening variables (SVs) will be applied to
explore the specific conditions under which the MODIS predictions are more and less
strongly validated. The SVs will focus especially on the influences of FIA and MODIS
data quality and spatial mismatch between the two data sets. Furthermore, we assess
whether AR is a constant or varying fraction of GPP by mapping the residual in the
optimal relation between MODIS GPP and FIA NPP. With this knowledge, it can
become known under what conditions MODIS GPP predictions are correct and, con-
versely, for what conditions MODIS needs to be improved so that its GPP predictions
can be corrected.

2. Data preparation

2.1 Study area

The data from 31 easternmost US states were used in this sub-continental-scale anal-
ysis. The study area contains 140 million hectares of forest, which is approximately
50% of the total forested area in the USA (USDA Forest Service 2003). The study
area is diverse, containing 5 of the 11 ecosystem divisions that Bailey (1995) identified
in the conterminous USA: continental hot, continental warm, prairie, savannah and
subtropical.

2.2 FIA plot data

The FIA Program of the Forest Service, US Department of Agriculture, has con-
ducted a nationwide forest inventory since the 1920s to determine various forests,
attributes (Bechtold and Patterson 2005). Until 1998, the FIA Program used a periodic
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6126 Y. Kwon and C. P. S. Larsen

system that inventoried all of the plots in a US state once every 10–15 years; dif-
ferent states used different plot configurations and either fixed or variable radius
sampling methods. Since 1998, the FIA program has used an annual inventory sys-
tem in which approximately 20% of the plots in eastern US states and 10% in western
US states are inventoried every year, using a nationally common, fixed-area plot
configuration. Phase 1 of the annual FIA sampling procedure stratifies land into
forest and non-forest using remotely sensed imagery or aerial photographs. This is
done to reduce variance of estimation at population level. One plot is identified
for approximately every 6000 acres (24.3 km2) of forest. Phase 2 of the inventory
involves field measurements at FIA’s network of ground plots; field crews visit for-
est land-use plots and measure various vegetative attributes (Bechtold and Patterson
2005).

All privately owned FIA plots have, for privacy reasons, had their recorded location
‘perturbed’ by up to 1.6 km (but usually within 0.8 km), and up to 20% of private
plots have also had their geographic coordinates ‘swapped’ with a nearby similar plot.
It is likely that this will only have a small effect on relations with MODIS data as
the pixel resolution is similar to the radius of perturbation. It has been suggested that
the effect of perturbation on spatial patterns of FIA forest volume is negligible when
non-perturbed volumes are compared with perturbed volumes smoothed over an area
within a 5 km radius of the FIA plot (McRoberts et al. 2005b).

The FIA database for the 31 easternmost US states has records for a total of
2 237 529 trees from 61 317 phase 2 ground plots. Newly established plots could not
be used for the computation of growth rates as that requires two sequential measure-
ments; their exclusion resulted in the data set being reduced to 2 029 490 tally trees
from 54 969 ground plots. We refer to the 61 317 plots as the Original data set and the
54 969 plots as the Complete data set as it is more complete in the sense of it having
the sequential measures required to calculate NPP.

2.2.1 Net annual growth rate from FIA. Tree growth was calculated by measuring
the changes in volume between two sequential measurements for each inventory plot.
Given the 20% per year sampling intensity in the FIA annual inventory system, growth
was calculated based on the 5 years of growth between the consecutive measurements.
In US states where the second cycle of annual inventory has not yet been completed
(table 1), the plots established during the last periodic inventory that were co-located
with the annual inventory were used as the first measure, with the second measure
provided by the first cycle of the annual inventory.

Table 1. Progress of the annual inventory in the 31 eastern US states used in this study.

States Progress (%)

Alabama, Arkansas, Georgia, Illinois, Indiana, Iowa, Kentucky, Louisiana,
Maine, Michigan, Minnesota, Mississippi, Missouri, Ohio, Pennsylvania,
South Carolina, Tennessee, Wisconsin

100

New York, New Hampshire, Rhode Island 80
Connecticut, Delaware, Florida, Maryland, Massachusetts, North Carolina,

Vermont
60

New Jersey, West Virginia 40
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MODIS GPP validation and FIA plot-scale NPP measures 6127

To calculate a plot-level estimate of NPP, field-measured net annual growth rates
were calculated on a per acre basis using the Structured Query Language (SQL) in
a relational database. The net annual volume increment (Gi) was, following Bechtold
and Patterson (2005), calculated as

Gi =
∑4

j

∑
t
yijt

/∑4

j
a0ij , (1)

where yijt is the annual net change in volume in cubic feet (1 cubic foot = 0.0283 m3)
for tree t on macro-plot, subplot or micro-plot j of plot i. yijt is computed as
[(V2 − V1)/(T2 − T1)], where V is the volume, T is the year of measurement and
subscripts 1 and 2 denote the past and current measurements, respectively; a0ij is the
total area in acres (1 acre = 4047 m2) used to observe the volume increment on plot i.
Subscript j has the same meaning here as above.

2.2.2 Woody carbon budgets from volume increment. An FIA plot’s net annual
volume increment measured in cubic feet per acre per year was converted to a measure
in grams of carbon per square metre per year (g C m−2 year−1), the unit of measure
used for MODIS GPP, by applying species- and region-specific conversion factors
(table 2). Forest types varied from those with a low density such as the spruce and
fir in the north-central region to those with a high density such as oak and hickory in
the southern region (Birdsey 1996). Forest types not listed in table 2 were converted
using the average of the conversion factors for the appropriate region.

2.3 MODIS GPP

MODIS GPP data were obtained as 8 day composites for the period from 1 January
2001 to 31 December 2004 from the Land Processes Distributed Active Archive Center
(LP DAAC; http://lpdaac.usgs.gov). A total of 11 MODIS tiles were mosaicked to
cover the 31 eastern states, resulting in a total of 1980 tiles for the 4 year collection
period (45 composites per year × 11 tiles per composite × 4 years). This total does
not include the three missing 8 day composites that were lost due to a reset of the

Table 2. Factors to convert volume (ft3 acre−1) to carbon content (g C m−2) for
major forest types.

US region Forest type Conversion factors

South Loblolly pine 27.93
Longleaf pine 32.09
Oaks and hickories 32.7

Northeast and mid-Atlantic Pines 23.91
Spruces and firs 21.58
Oaks and hickories 34.01
Maples, beeches, birches 34.01

North Central Pines 23.91
Spruces and firs 21.58
Oaks and hickories 34.01
Maples and beeches 32.33
Aspens and birches 25.63

D
ow

nl
oa

de
d 

by
 [

U
ni

ve
rs

ity
 o

f 
D

el
aw

ar
e]

 a
t 1

3:
09

 1
7 

O
ct

ob
er

 2
01

2 



6128 Y. Kwon and C. P. S. Larsen

MODIS instrument (day of year (DOY) 209 to DOY 224 in 2001) and due to LP
DAAC download errors (DOY 96 to DOY 104 in 2002). To minimize distortion, the
mosaics were processed into an Albers equal-area conic projection using the MODIS
Reprojection Tool.

2.3.1 MODIS land cover. The estimation of MODIS GPP values uses a land-cover
system with 14 classes, developed at the University of Maryland (UMD), because land
covers differ in their radiation-use efficiency (Running et al. 2000). A total of 34.7%
of the eastern US study area had pixels with one of the five forest-related land-cover
classes: evergreen needleleaf (1.6%), evergreen broadleaf (2.7%), deciduous needleleaf
(0.1%), deciduous broadleaf (15.6%) and mixed forest (14.7%). In this research, the
MODIS forest classes were used to assess the consistency of the forest classification
between MODIS pixels and co-located FIA plots.

2.3.2 Pixel-level quality assurance data. The MODIS collection 5.0 land product,
produced at the University of Montana, provides pixel-level quality assurance (QA)
data to allow maximum control over the data set. Each pixel contains quality-scoring
‘flags’ whose values are 8-digit-long binary equivalent numbers. Binary numbers are
divided by four separate bit fields corresponding to specific QA schemes: SCF-QC,
cloud state, dead detector and MODLAND-QC.

2.3.3 Annual GPP. The values of annual GPP were smoothed to minimize spatial
and temporal discrepancies between the MODIS and FIA data. Individual values of
GPP and corresponding QA layer were, for two reasons, spatially smoothed using a
5 × 5 pixel moving average window. First, this would minimize the effect of geoloca-
tional mismatches from the perturbed and swapped FIA plots (cf. McRoberts et al.
2005b). Second, the 25 km2 area of the smoothing window would be similar to the
6000 acre (24.3 km2) area that each FIA plot represents.

Complete sets of 8 day composites of the spatially smoothed pixels were then
summed to each month for the period from 2001 to 2004. The three missing 8
day composites and the MODIS pixels excluded after the quality check presented
in §3.3.1 were replaced by linear interpolation between the values of the previous
good 8 day period and the next good 8 day period. The 4 year sums of GPP val-
ues were then averaged to get a mean annual GPP, resulting in some temporal
smoothing.

3. Methods

3.1 Overview

Field-based NPP was calculated for each FIA plot using the net annual growth rate
measurements for each tree as modified by species- and region-specific conversion fac-
tors; these data were stored in a relational database. Monthly and yearly (2001–2004)
summed MODIS GPP pixel values, QA pixel values and land-cover classification
codes were also overlaid to corresponding FIA plot locations. Those three MODIS
layers were then appended to the FIA plot-level table stored in a relational database.
To determine the conditions under which MODIS GPP predictions were most strongly
validated against co-located FIA NPP plots, the relational database was then used
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MODIS GPP validation and FIA plot-scale NPP measures 6129

Table 3. The eight SVs used to test six hypotheses about relations between the FIA NPP and
MODIS GPP data.

Hypothesis Data SV Criteria

1. MODIS pixel-level
quality checks

MODIS 1. Quality assurance
data

≤48 (QA scoring
values, best quality
pixels); >48 (not
best)

2. FIA plot-level quality
checks

FIA 2. Net growth values Quality check plots
(plots without
artificial plot
condition and
outliers of extremely
high values of
volume increments)

3. Assessment of
land-cover
classification

MODIS 3a. UMD land-cover
classification

Only forest land cover;
non-forest land cover

MODIS and FIA 3b. Land-cover
assessment

Correctly classified;
misclassified

4. FIA plot homogeneity FIA 4a. Condition
proportion
(condprop)

If =1: homogeneous
plots; if<1:
heterogeneous plots

4b. Species group
code (spgrpcd)

≥75% of single species
group code; <75% of
single species group
code

5. FIA sample size FIA 5. Number of trees <36; ≥37
6. Seasonal variation in

MODIS GPP
MODIS 6. Bimonthly

averaged GPP
Six groups of

non-overlapping
2 month periods

Note: FIA, Forest Inventory and Analysis; GPP, gross primary production; MODIS, Moderate
Resolution Imaging Spectroradiometer; NPP, net primary production; SV, screening variable.

to test the following six hypotheses using eight SVs (table 3). We infer a stronger
validation where the statistical correlation between the two data sets is higher.

First, as the quality of MODIS observations varies because of interference by fac-
tors such as clouds and shadow, it is hypothesized that the use of only MODIS pixels
that have passed quality checks will improve relations. Second, as FIA data sets that
indicated evidence of plot-level stand treatment such as cutting or clearing might be
too localized to influence the MODIS pixel, it is hypothesized that the removal of such
extreme values or logging artefacts will improve relations. Third, as the different size
of MODIS pixels and FIA plots could lead to scaling mismatches in their land-cover
classifications, it is hypothesized that the use of only co-located MODIS pixels and
FIA plots that have the same predicted forest type will reduce scaling mismatches and
thus improve relations. Fourth, as heterogeneous forest types and conditions within
FIA plots would increase the chance of scaling mismatches with MODIS pixels, it is
hypothesized that the use of only homogeneous FIA plots will improve relations. Fifth,
as MODIS reflectance data are of higher quality in closed-canopy forests (Yang et al.
2007), the use of FIA plots with higher numbers of trees will improve relations. Sixth,
as there is evidence that the MODIS GPP signal becomes saturated during the mid-
summer (Myneni et al. 2002), it is hypothesized that relations between MODIS GPP
from different seasons and annual FIA NPP will be lowest for the summer season.
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6130 Y. Kwon and C. P. S. Larsen

3.2 Analytical methods

Relations between MODIS GPP and FIA NPP were reported using Pearson correla-
tion coefficients. All data sets for each hypothesis were tested for normality using the
Anderson–Darling test (Anderson and Darling 1952).

The correlation coefficients and slopes of the two different criteria used for each
SV were compared to assess whether the criterion with the highest correlation had a
significantly different correlation coefficient and regression slope than the other cri-
terion for that SV. The procedures developed by Fisher (1921) were used to compare
correlation between two subgroups after the application of an SV and the Pearson
correlation coefficient (r) value was transformed to the normally distributed r′ using
Fisher’s transformation:

r′ = 0.5 ln

∣∣∣∣1 + r
1 − r

∣∣∣∣ . (2)

The z-statistic was calculated to compare correlation coefficients:

z = r′
1 − r′

2√
1

n1−3 − 1
n2−3

, (3)

where correlation coefficients (r) were transformed to r′ (equation (2)), n is the number
of plots and subscripts 1 and 2 represent the criterion for that SV with the highest and
lowest correlation coefficients, respectively.

The regression slopes for the pair of criteria for each SV were compared as fol-
lows. For each two linear regression models yi = xiβi + εi, where β i is the regression
coefficient, εi is the error term and i ∈ 1, 2 we tested the null hypothesis, H0: β1 = β2.
Separate regression analyses were conducted to calculate the unrestricted sum of
squares (URSS). Let β̂1 and β̂2 be the slope estimates with residuals ε̂1 and ε̂2 from the
separate regressions, respectively; then the unrestricted sum of squares for the whole
data set is URSS = ε̂′

1ε̂1 + ε̂′
2ε̂2. The data were then pooled to calculate the restricted

sum of squares (RRSS). Let β̂ be the common slope with the residuals ε̂ from the
pooled data sets; then the restricted sum of squares is RRSS = ε̂′ε̂. Under the null
hypothesis, there should be no significant difference between URSS and RRSS; the
test statistic was calculated using an F-test as

F = (RRSS) − (URSS)/k
(URSS)/(n − 2k)

, (4)

where URSS is the unrestricted residual sum of squares from the separate regressions
with n − 2k degrees of freedom, RRSS is the restricted residual sum of squares from
pooled data with n − k degrees of freedom, n is the total number of observations in
the two subgroups and k is the number of parameters. If the correlation coefficient
and slope of the relationship between the two criteria for an SV were not significantly
different from each other, then the data for the criterion with the lower correlation
value would not be removed from the optimal validation data set.
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MODIS GPP validation and FIA plot-scale NPP measures 6131

3.3 Validation of MODIS GPP with FIA NPP

3.3.1 Hypothesis 1: MODIS pixel quality check. The first SV (SV 1) to be used was
a pixel-level application of MODIS QA scoring data and non-terrestrial fill-values to
filter out low-quality MODIS pixels. A QA scoring indicates the quality of preceding
input products such as f PAR and LAI that exert direct influence on the quality of
GPP. The QA numbers for a pixel were converted to eight-digit binary equivalents
and screened by the last three-digit binary numbers for the factors MODLAND and
the condition of the detector. If the QA number was 48 or less, with lower numbers
indicating higher quality, it was assumed that the pixel was of high enough quality
to use. Non-terrestrial or non-modelled pixels indicated by especially high numeric
integer codes (32 761–32 767) were used to mask pixels whose values are above the
biophysically relevant limit range of 30 000. We hypothesize that the use of higher
quality pixels will be more strongly validated, because the removal of atmospheric
interference should make their GPP estimates more accurate.

3.3.2 Hypothesis 2: FIA plot condition quality check. This hypothesis involved SV
2 as an FIA plot condition quality check that removed plots where a significant
stand treatment occurred within the last 5 year cycle or where extremely high growth
values existed. The FIA stand treatment code of TRTCD was used to select the
plots affected by artificial site preparation such as artificial regeneration, cutting and
clearing. Extremely high growth values were screened as outliers by examining the
histogram graphically. The cut-off value of maximum NPP was set to 1500 g C m−2

year−1 resulting in approximately 0.4% of the plots with the highest growth values
being excluded. We hypothesize that FIA plot conditions without evidence of artifi-
cial treatments and outliers will be more strongly validated because these conditions
would be highly localized and thus undetectable in the relatively larger MODIS pixels.

3.3.3 Hypothesis 3: Consistency of forest classifications for MODIS pixels and FIA
plots. Two SVs (i.e. SVs 3a and 3b) were used to assess the influence of consistency
of forest classifications between MODIS pixels and FIA plots. SV 3a entailed compar-
ison of the NPP from forested FIA plots first with co-located MODIS pixels that the
MODIS land-cover data classified as forest and secondly with the MODIS pixels that
were not classified as forest.

SV 3b involved organizing the MODIS forest pixels into softwoods (a combination
of the two evergreen classes), hardwoods (a combination of the two deciduous classes)
and mixed forest. The FIA plots were organized into three similar groups by using the
28 FIA species group codes; an FIA plot was classified as hardwood (or softwood)
if more than 75% of both the basal area and number of stems were hardwood (or
softwood), while plots containing less than 75% of one type were classified as mixed
forest. Relations between MODIS GPP and FIA NPP were then assessed first using
just the MODIS pixels and co-located FIA plots that had the same forest class and
then using MODIS pixels and co-located FIA plots that had different forest classes.
We hypothesize that the use of conditions with similar classifications between MODIS
pixels and FIA plots will be more strongly validated because MODIS GPP estimation
relies heavily on land-cover types (Heinsch et al. 2006).

3.3.4 Hypothesis 4: FIA plot homogeneity. Two SVs (i.e. SVs 4a and 4b) were
employed to assess the influence of using only homogeneous FIA plots. SV 4a
inferred homogeneity using the ‘condition proportion’ information for each FIA plot.
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6132 Y. Kwon and C. P. S. Larsen

Relations between MODIS GPP and FIA NPP were first considered for homogeneous
FIA plots in which all of their subplots had the same land-use or vegetation type (as
indicated by a condition proportion of 1) and were then considered for heterogeneous
FIA plots in which their subplots had more than one land-use or vegetation type (as
indicated by a condition proportion of less than 1).

SV 4b inferred homogeneity using forest composition information represented by
the species group codes within each FIA plot. A plot was considered homogeneous
if any particular species group comprised more than 75% of its total basal area and
stems of trees, and was otherwise considered heterogeneous. Relations between pre-
dicted GPP for MODIS pixels and co-located measured NPP for FIA plots were first
considered for the FIA plots considered to have a homogeneous forest composition
and then for those considered to have a heterogeneous forest composition. In addition
to the use of the 75% cut-off value, the effect of progressively increasing the cut-off
values was explored, beginning at a value of zero and using equal steps of homogene-
ity. Equally sized groups were not used as was done for SV 5, because this resulted in
some cut-off values being too close to each other to be meaningful. We hypothesize
that homogeneous FIA plots will be more strongly validated because homogeneous
plots should minimize the chances of spatial mismatches between two data sets.

3.3.5 Hypothesis 5: FIA plot tree density. FIA plot-level tree density was calculated
by counting the number of tally trees (SV 5) with a diameter at breast height (dbh)
larger than 5.0 inches (about 12 cm) within each plot. It was assumed that as all
trees were enumerated within each fixed-radius plot, greater numbers of tally trees
may indicate a progressively denser and more closed-canopy forest. FIA plots were
put into two criteria, using the median number of 36 tally trees per plot as the dividing
point. In addition to the use of the median cut-off value, the effect of progressively
increasing the cut-off value was explored using five equally sized, independent groups
of FIA plots. We hypothesize that closed-canopy forest will be more strongly validated
because MODIS estimations are reported to have higher quality in closed-canopy
forest (Yang et al. 2007).

3.3.6 Hypothesis 6: MODIS seasonal signal. SV 6 involved comparing FIA’s
annual NPP signal with seasonalized signals of MODIS GPP. The 8 day composites of
MODIS GPP pixels were seasonalized by aggregating them into six non-overlapping
groups of 2 months. Relations between MODIS GPP and FIA NPP were then consid-
ered separately for each 2 month period of MODIS GPP. We hypothesize that MODIS
GPP estimates will be more strongly validated at the start and end of the growing
season because the MODIS GPP signal becomes saturated during the mid-summer
(Myneni et al. 2002).

3.4 Selection of optimal validation data sets

An optimal data set for the validation of MODIS pixels using FIA plots should have a
high correlation coefficient and also contain many samples. To this end, in the case of
SVs 4b and 5, which showed an increasing correlation as the criterion cut-off was pro-
gressively changed, an exception was made so that the criterion cut-off was modified
to include a greater number of plots, though at the expense of a reduced correlation.

The trade-off between improved correlation coefficient and reduced number of
samples was evaluated using Fisher’s z-statistic (equation (3)). The z-statistic was used
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in three different ways to determine the following three different relative performances
of SVs. First, a within-SV z-value was calculated by comparing two different criteria
of a particular SV. It evaluated the trade-off between improved relations obtained by
using the best criterion of a particular SV and reduced samples obtained by using the
other criterion of that particular SV. The higher within-SV z-value indicated the better
performance of FIA criteria for characterizing plot attributes. Second, a between-SV
z-value was calculated by comparing the best criterion of SV 1 and SV 2 relative to the
Complete data set, and the remaining SVs relative to the best criterion of SV 2. Third,
a sequential-SV z-value was calculated to assess the relative performance of the data
set with the sequential addition of the best criterion of different SVs.

To select optimal validation data sets, SV 1 and SV 2 were applied first as basic data
quality controls and the remaining SVs were applied sequentially in the order of most
to least efficient based on their between-SV z-value. If the addition of a particular SV
did not result in a significantly increased Pearson correlation between the MODIS and
FIA data sets (p > 0.05), then that SV was not included in the final optimal validation
data set.

3.5 Representativeness of SV’s data sets

It is possible that the sequential application of SVs to create the optimal validation
data set would result in a subset of data that were not representative of the range
of conditions and locations found in either the Original or Complete data sets.
The Complete data set of 54 969 plots used in the optimal validation data set has
sequential inventories that allowed for the measurement of NPP; the Original data set
of 61 317 plots is the sum of 54 969 Complete data sets and an additional 6348 newly
established plots that lack a second inventory that allowed NPP to be measured.
Representativeness of the reduced optimal validation data sets was assessed in terms
of relative species composition and relative state representation. In terms of species
composition in each data set, the percentage relative abundance of each tree species
was calculated as the total basal area of the species divided by the total basal area of
all species. In terms of state representation in each data set, the percentage of forested
plots in each state was calculated as the number of plots in that state divided by the
total number of plots for the whole study area. Representativeness of the species
composition and state representation of the reduced data sets created through the
sequential applications of SVs was assessed by calculating the Pearson correlation
coefficients between these values of species composition and state representation and
those in the Original data set. In addition to relative examinations of representation,
mean MODIS GPP and FIA NPP values of each reduced data set were also calculated
to support representativeness of reduced data sets. The mean GPP and NPP values
after the application of sequential SVs should be stable if the reduced data sets
maintain the representativeness of the Original data sets.

3.6 Residual map

A map of the residuals of the optimal relation between MODIS GPP and FIA NPP
was created to assess whether autotrophic respiration (AR) is a constant (Potter et al.
1993, Dewar et al. 1998, Waring et al. 1998) or varying (Chapin et al. 2002, Xiao et al.
2003, DeLucia et al. 2007) proportion of GPP. The residuals were calculated as

ε̂ = y − ŷ, (5)
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6134 Y. Kwon and C. P. S. Larsen

where ε̂ is the residual of the relation between MODIS GPP and FIA NPP, is the
observed value of MODIS GPP and ŷ is the predicted value of GPP as a linear
function of FIA NPP.

The geographic pattern of the residual map was assessed using a trend surface
analysis of the residuals where the spatial coordinates are the predictors.

4. Results

4.1 MODIS GPP and FIA NPP across the eastern USA

Similar spatial patterns are apparent in the maps of MODIS GPP following the
application of SV 1 and FIA NPP following the application of SV 2 (figure 1).
MODIS GPP (figure 1(a)) exhibited particularly low values in Lake States (Michigan,
Wisconsin and Minnesota) and progressively higher values from north to south. FIA
NPP (figure 1(b)) exhibited a similar pattern, although high values were also scattered
within the Lake States.

4.2 Validation of MODIS GPP with FIA NPP

Correlation of the MODIS GPP data set with the Complete FIA data set, prior to
the application of any SVs, had a Pearson correlation coefficient of 0.01 (table 4). The
54 969 FIA plots and co-located MODIS pixels were used to test the following six
hypotheses, and their corresponding eight SVs, regarding ways to improve the correla-
tion between MODIS GPP and FIA NPP. The results from test statistics (equations (3)
and (4)) showed that the correlation coefficient and regression slope coefficient for the
different criteria for each SV were all significantly different from each other (p < 0.05).
As the Anderson−Darling tests suggested that the data sets were not normally dis-
tributed, we report a Pearson correlation coefficient using Fisher’s transformation
procedures at a 95% confidence level. Spearman correlations were also calculated
and were slightly higher than the Pearson values (median increase was 0.03), and the

(g C m–2)
High (3000)

Low (0)

(g C m–2)

(a) (b)

High (3000)

Low (0)

Figure 1. Values of (a) MODIS GPP and (b) FIA NPP for locations that remain following the
application of screening variables 1 and 2.
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relative size of both of them and the resulting z-values were the same for Pearson and
Spearman correlations. However, we report Pearson correlations to ease comparison
of results with other studies.

4.2.1 Validation following MODIS pixel-level quality checks. Low-quality pixel val-
ues comprised 18% of the MODIS forest pixels, with 16% due to low QA values
and 2% due to non-terrestrial fill-values. Replacement of these data with, respectively,
temporally and spatially smoothed fills resulted in an increase in r from 0.01 to 0.11.

4.2.2 Validation following FIA plot-level quality checks. The implementation of SV
2 resulted in the exclusion of a total of 8329 FIA plots: 5527 plots with an artificial
plot condition and 2802 plots with extremely high values of volume increments. This
application of SV 2 increased the r-value from 0.11 to 0.20.

4.2.3 Validation following consistency of forest classifications. The application of SV
3a indicated that more than half of FIA plots were located in MODIS pixels with
non-forest covers. Correlations between MODIS GPP and FIA NPP dropped from
r = 0.20 to r = 0.18 if only non-forested pixels were used and rose to 0.25 if only
forested pixels were used.

The application of SV 3b indicated that less than one-quarter of the FIA plots had
the same type of forest class as indicated by the MODIS data. Correlations between
MODIS GPP and FIA NPP dropped from r = 0.20 (following the application of SVs
1 and 2) to r = 0.17 if only non-similarly classified pixels were used and rose to 0.34 if
only similarly classified pixels were used. The classification error matrix (table 5) shows
that mixed forest made up 51% of MODIS pixels and 33% of FIA plots. Deciduous
forest made up 41% of MODIS pixels and the corresponding hardwoods made up 50%
of FIA plots, whereas evergreen forests made up 8% of MODIS pixels and the corre-
sponding softwoods made up 17% of FIA plots. A producer’s accuracy, computed
as the proportion of correctly classified FIA plots, shows that mixed forest had the
highest classification accuracy (64.9%), deciduous forest had an intermediate accu-
racy (60.1%) and evergreen forest had the lowest accuracy (22.6%). A map-based
user’s accuracy, computed as the proportion of correctly classified MODIS pixels,
shows that hardwoods had the highest classification accuracy (72.4%), softwood had
an intermediate accuracy (50.0%) and mixed forest had the lowest accuracy (42.0%).

Table 5. The classification error matrix for MODIS land cover and FIA plots, for the 25 989
MODIS pixels and co-located FIA plots that passed the criteria for SVs 1, 2 and 3a.

FIA
Number of Producer’s User’s

Mixed MODIS accuracy accuracy
Softwood Hardwood forest pixels (%) (%)

MODIS Evergreen 1005 411 595 2011 22.6 50.0
Deciduous 570 7805 2406 10 781 60.1 72.4
Mixed 2876 4771 5550 13 197 64.9 42.0
No. of FIA plots 4451 12 987 8551 25 989

Note: FIA, Forest Inventory and Analysis; MODIS, Moderate Resolution Imaging Spectroradiometer; SV,
screening variable.
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4.2.4 Validation following FIA plot homogeneity. The application of SV 4a showed
that slightly more than half of the FIA plots had a homogeneous condition. The use
of plots with a non-homogeneous condition resulted in no change in the correlation
coefficient, which remained at 0.20. The use of plots that were homogeneous increased
the r-value to 0.26.

The application of SV 4b suggested that in approximately one-fifth of the FIA plots,
more than 75% of the trees had the same species group code. The use of FIA plots in
which less than 75% of the trees had the same species group code resulted in the value
of r dropping to 0.19, whereas the use of plots in which more than 75% of the trees
had the same species group code resulted in r increasing to 0.35.

4.2.5 Validation following FIA sample size. The application of SV 5 indicated that
the mean and median numbers of tally trees per plot were 37 and 35, respectively. The
use of plots that contained fewer than the mean number of trees resulted in the corre-
lation coefficient dropping from 0.20 to 0.15, whereas the use of plots that contained
the mean number of trees or greater resulted in r increasing to 0.35.

4.2.6 Validation following MODIS seasonal signal. Eight day composites of
MODIS GPP for the study region showed that GPP was low but above 0 for January
and February, steadily rose to a peak in late July and then steadily decreased to
near zero in December (figure 2(a)). In contrast, the Pearson correlation between the
MODIS pixels of each of those 8 day composites and of the co-located FIA plots of
annual NPP showed a bimodal pattern (figure 2(b)). Correlations were 0.1 in early
January, steadily rose to a peak near 0.3 in late April, decreased and varied around 0
from early July to late August, steadily rose again to a peak near 0.4 in late October
and then dropped progressively after that.

The spatial pattern and frequency distribution of GPP values varied by month
(figure 3). In April, there was a bimodal distribution, with a cluster of low values in
the north. In August, there was still a bimodal distribution, with the two peaks shifted
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Figure 2. (a) Eight day composite of MODIS GPP averaged for 2001–2004. (b) Correlations
between each 8 day composite of MODIS GPP with annual FIA NPP. These results are based
on analyses of the data set following the application of screening variables 1 and 2.

D
ow

nl
oa

de
d 

by
 [

U
ni

ve
rs

ity
 o

f 
D

el
aw

ar
e]

 a
t 1

3:
09

 1
7 

O
ct

ob
er

 2
01

2 



6138 Y. Kwon and C. P. S. Larsen

1000

(a) (i)

(b) (i)

(c) (i) (ii)

(ii)

(ii) (iii)

(iii)

(iii)

1000 2000
FIA NPP (g C m–2 year–1)

3000

800

350

300

250

200

150

100

50

600

600

500

400

Fr
eq

ue
nc

y
Fr

eq
ue

nc
y

Fr
eq

ue
nc

y

300

200

100

0

400

200

0 0
0

1000 2000
FIA NPP (g C m–2 year–1)

30000

1000 2000
FIA NPP (g C m–2 year–1)

30000

20 100 180
MODIS GPP (g C m–2 month–1)

M
O

D
IS

 G
P

P
 (

g 
C

 m
–2

 m
on

th
s–1

)

300

250

200

150

100

50

0M
O

D
IS

 G
P

P
 (

g 
C

 m
–2

 m
on

th
s–1

)
300

250

200

150

100

50

0M
O

D
IS

 G
P

P
 (

g 
C

 m
–2

 m
on

th
s–1

)

260

1000

800

600

400

200

0

Low (0)

High (300)

20 100 180
MODIS GPP (g C m–2 month–1)

(g C m
–2

 months
–1

)

260

20 100 180
MODIS GPP (g C m–2 month–1)

260

Figure 3. Maps of monthly averaged MODIS GPP for (a(i)) April, (b(i)) August and (c(i))
September. Histograms of MODIS GPP for (a(ii)) April, (b(ii)) August and (c(ii)) September.
Scatter plots of MODIS GPP and FIA NPP for (a(iii)) April, (b(iii)) August and (c(iii))
September. The data are for co-located MODIS pixels and FIA plots following the application
of screening variables 1–3.

to higher values of GPP. In September, there was a unimodal distribution, with the
peak frequency shifted yet again to a higher GPP.

The application of SV 6 involved assessing how correlations between MODIS GPP
and FIA NPP varied when the MODIS data were aggregated into different pairs
of months. For the 2 month pairs, correlations were highest for September–October
and slightly lower for March–April, lowest for July–August and second-lowest for
January–February.

4.3 Selection of optimal validation data sets

The optimal validation data sets used in this study were selected to have high corre-
lations between the MODIS and FIA data sets and to have many samples. The use
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MODIS GPP validation and FIA plot-scale NPP measures 6139

Table 6. Correlations between MODIS GPP and FIA NPP when different criterion cut-offs
were used for SVs 4b and 5.

Degree of
homogeneity

Pearson
r-value

Number of
samples

Number
of trees in

a plot
Pearson
r-value

Number of
samples

SV 4b =0 0.20 46 097 SV 5 <21 0.08 8993
>25 0.25 40 979 21–31 0.17 9512
>50 0.29 23 828 32–41 0.20 10 007
>75 0.34 9910 42–54 0.27 9267

=100 0.38 2407 ≥55 0.44 8318

Notes: FIA, Forest Inventory and Analysis; GPP, gross primary production; MODIS, Moderate
Resolution Imaging Spectroradiometer; NPP, net primary production; SV, screening variable.
Criteria for SV 4b were regrouped into different degrees of homogeneity. Criteria for SV 5 were
regrouped to contain equal sample sizes of approximately one-fifth of the FIA plots.

of FIA plots with higher degrees of homogeneity (SV 4b) and tree density (SV 5)
resulted in higher correlations with MODIS GPP, though at the expense of number
of plots (table 6). To enable a higher number of samples in the optimal validation
data set, though at the expense of a lower correlation, the optimal validation data set
was created using the criteria of >50% homogeneity for SV 4b and >20 tally trees
for SV 5.

In the creation of the optimal validation data set, the SVs were applied in the
sequence from highest to lowest efficiency as indicated by the z-values. The individ-
ual evaluation of SVs exhibited approximately the same sequence of relative efficiency
for the within- and between-SV z-values (table 4). SVs 1 and 2 were applied first as
they are considered necessary quality checks, then the remaining SVs were applied in
descending order of their between-SV z-value from table 4.

The results of the sequential z-value approach indicate that while the application
of each SV resulted in an increase in the Pearson r-value and a decrease in number
of plots (N), only SVs 1, 2, 6, 5 and 4b significantly increased the efficiency of the
optimal validation data set (table 7). SVs 3b and 3a did not increase the Pearson
r-value, and SV 4a increased it by only a non-significant amount of 0.03. The opti-
mal validation data set following the application of the five significant SVs consisted
of 17 090 MODIS pixels and co-located FIA plots and had a Pearson correlation
coefficient of 0.48. The correlation decreased to 0.45 if the same five SVs were used,
except that annual GPP was used for SV 6 instead of the best seasonal criterion of
September–October GPP.

4.4 Representativeness of SV’s data sets

Application of SVs 1 and 2 maintained representativeness of the Original data set in
terms of FIA species and FIA plots, as indicated by Pearson correlations of not lower
than 0.97, but had large differences in mean MODIS GPP and FIA NPP (table 8).
The application of SVs 6 and 5 again maintained representativeness of the Original
data set in terms of FIA species and FIA plots, as indicated by Pearson correla-
tions of not lower than 0.97, and also had similar values of MODIS GPP and FIA
NPP. The application of SV 4b of the statistically significant optimal validation data
set maintained representativeness of species with a Pearson correlation of 0.95, while
that for plots dropped to 0.85, though MODIS GPP and FIA NPP remained simi-
lar. Application of the remaining three SVs, which were not part of the statistically
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6140 Y. Kwon and C. P. S. Larsen

Table 7. Changes in the number of plots, the correlations between GPP and NPP, and the
sequential z-value, as SVs are applied. The SVs were applied in the order of first the basic qual-
ity control SVs 1 and 2, and then the remaining SVs in descending order of their between-SV

z-value as given in table 5.

Sequence of SVs for Number of
optimal data sets Pearson r-value plots used Sequential z-value p-Value

Complete, non-screened 0.01 54 969 N/A
SV 1 0.11 54 969 16.65 <0.001
SV 2 0.20 46 097 14.61 <0.001
SV 6 0.34 46 097 22.97 <0.001
SV 5 0.38 36 782 6.57 <0.001
SV 4b 0.48 17 090 13.27 <0.001
SV 3b 0.52 3767 1.46 0.14
SV 3a 0.52 3767 0.00 1.00
SV 4a 0.55 2436 1.03 0.30

Notes: SV, screening variable.
The sequential z-value indicates the performance of the optimal validation data set used upon
the addition of that SV, relative to the optimal validation data set created by the addition of the
previous SV.

significant optimal validation data set, exhibited poor representativeness in terms
of plots with the Pearson correlation dropping to lower but still statistically signifi-
cant values between 0.50 and 0.53, though representativeness in terms of species and
productivity still remained good.

Although species representation remained high following the application of the SVs,
of the 240 species in the Original data set, 22 were lost by the time SV 4b was applied
and 68 were lost by the time SV 4a was applied. FIA plot representation remained
high for the optimal validation data set of five SVs, but when all eight SVs are applied,
several states (Illinois, Iowa, Kentucky, Maryland and Indiana) had weak spatial rep-
resentation with less than one FIA plot for every 100 000 acres. MODIS GPP dropped
dramatically following the application of SV 6, and then both MODIS GPP and FIA
NPP showed slight increases following the application of each subsequent SV except
the last one (SV 4a).

4.5 Residual map

The residuals in the relation between annual MODIS GPP and annual FIA NPP were
calculated using the optimal data set with N = 17 090 (table 7), except that instead of
using the bimonthly value of GPP from September and October suggested for SV 6
(table 4), the annual value of GPP was used. The linear relation between MODIS GPP
and FIA NPP was y = 0.62x + 1036.8 (coefficient of determination (R2) = 0.23). The
spatial pattern of the residuals was fitted with a quadratic model in the trend surface
analysis as it had the lowest root mean square (RMS) of the available polynomial
functions (RMS = 198.4, p < 0.05). The residual map exhibited negative values in the
northern half of the study area and positive values in the southern half (figure 4).

5. Discussion

5.1 Screening variables

The eight different SVs that were used to test six different hypotheses each had a cri-
terion that provided significant increases (p < 0.05) in the correlations between the
MODIS GPP and FIA NPP data sets. The z-value computed for both within-SV
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Table 8. Representativeness of reduced data sets in terms of three conditions: the relative abun-
dance of tree species across the whole study area (species), percentage of the plots in each US

state (plots) and mean productivity of each data set.

Correlations between data set
and the Original

Mean
productivity

(g C m−2 year−1)

Condition MODIS FIA
SV applied No. of plots compared Pearson r-value GPP NPP

Complete, non-screened 61 317 Species 1.00 2101 N/A
Plots 1.00

SV 1 54 969 Species 0.98 1378 214
Plots 0.98

SV 2 46 097 Species 0.98 1330 208
Plots 0.97

SV 6 46 097 Species 0.98 211 208
Plots 0.97

SV 5 36 782 Species 0.98 235 239
Plots 0.97

SV 4b 17 090 Species 0.95 253 245
Plots 0.85

SV 3b 3767 Species 0.89 267 252
Plots 0.50

SV 3a 3767 Species 0.89 271 252
Plots 0.50

SV 4a 2436 Species 0.84 264 249
Plots 0.53

Notes: FIA, Forest Inventory and Analysis; GPP, gross primary production; NPP, net primary
production; SV, screening variable.
Data are presented in the order in which SVs were selected during the creation of the optimal
validation data set. Pearson correlations are reported for species and plots (all significant at a
p-value of <0.0000001). Mean productivity (g C m−2 year−1) was calculated using the data set
following the sequential application of SVs. The Original data set contains 61 317 FIA plots,
but only 54 969 of them, which comprise the Complete data set, had the two surveys required
to calculate NPP. Note that mean productivity values after the sequential application of SV 6
are bimonthly (September–October) averaged values of GPP.

and between-SVs, however, indicated that the performance of individual SVs varied
(table 4). For each SV, the best criterion evaluated by within-SV z-value had a Pearson
r-value that was higher than the other criterion by at least 0.06 (SV 4a) and by at most
0.20 (SV 5). The between-SV z-values showed similar results, with the best criterion
for each SV having a Pearson r higher than that for SV 2 (r = 0.20) by at least 0.05 (SV
5) and by at most 0.15 (SV 5). Individual SVs are discussed in order from the most to
least efficient, with higher between-SV z-values indicating greater efficiency.

The MODIS seasonal signal (SV 6) exhibited the highest efficiency, with a between-
SV z-value of 19.80. The high correlation coefficients during March to April and
September to October occurred when the spatial pattern of MODIS GPP exhibited
a continuous latitudinal gradient (figures 3(a)(i) and (c)(i)), whereas low correlation
coefficients during the summer were found when MODIS GPP reached its maximum
value across most of the eastern USA (figure 3(b)(i)). These results are similar to the
close agreement between MODIS seasonal GPP and process-based model estimates of
GPP at the beginning and end of the growing season (Turner et al. 2003, Nightingale
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Figure 4. The geographic pattern of residuals of relation between MODIS GPP and FIA NPP
following trend surface analysis.

et al. 2007). These patterns may be attributed to a saturation problem of a particular
remote-sensing bandwidth when crown densities are high (Myneni et al. 2002).

The second most efficient SV was FIA sample size (SV 5). If a greater number of
trees indicate a more highly closed forest canopy, then the higher correlation coef-
ficient with the larger FIA sample size may result from more stable MODIS pixel
reflectance coming from such closed-canopy plots (Drolet et al. 2005). In addition, a
large FIA sample size should reduce the variance in the FIA estimate of NPP, and
thus relations with MODIS GPP, as small numbers of samples within a fixed-radius
plot tend to consist of a few large trees.

The MODIS pixel-level QA check (SV 1) and the FIA quality check (SV 2) were
the third and fourth most efficient SVs, respectively. The MODIS pixel-level QA check
(SV 1) filtered out low-quality pixels, without a reduction in total N. The low-QA pix-
els were more common in summer, with 68% of them occurring in June, July and
August. This likely does not compromise the summer measures of GPP, however,
because 72% of the summer pixels had acceptable QA values. The FIA quality check
filtered out plots affected by artificial stand treatment and extremely high growth
values (SV 2). We traced plot-level extremely high growth values to tree-level mea-
surement errors of unlikely large tree diameters used for volume calculation. The
belief that artificial stand treatment plots should be excluded because they would be
from highly localized growth or mortality events is supported by there being higher
standard deviation (214 g C m−2 year−1) in artificial plots than non-artificial plots
(143 g C m−2 year−1).

SVs 4b and 4a, which assessed whether increased FIA plot homogeneity would
improve relations with MODIS GPP by reducing spatial mismatches with MODIS
data, had the fifth and eighth highest efficiencies. The use of highly homogeneous
plots in SV 4b did create a large increase in the Pearson r-value for both the within-SV
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criteria and the optimal validation data set; however, as it resulted in the loss of 80%
of the samples, it had a relatively low efficiency. Although the cut-off value of 75% for
strict homogeneity seemed reasonable, different cut-off values can be used to control
species composition homogeneity. Table 6 for SV 4b shows that the Pearson r-value
increased from 0.25 to 0.38 as the extent of homogeneity increased by a cut-off value
of 35% to 100%, while the number of samples reduced from 34 487 to 1717. These
increases in the Pearson r-value suggest that MODIS, as a passive optical sensor mea-
surement, is more suitable for relatively simple stand structures than it is for complex
ones (Lu 2006).

The two SVs that assessed land-cover classification to reduce spatial mismatches,
SVs 3b and 3a, had the sixth and seventh highest efficiencies, respectively. It is not
surprising that SV 3b was more efficient than SV 3a, as its requirement that MODIS
pixels and FIA plots had the same forest type actually includes the SV 3a requirement
that the pixels and plots are both forested. The high Pearson r for SV 3b confirms
the importance of spatial land-cover matches that the MODIS algorithm relies on to
calculate biome-specific carbon storage and turnover rates based on land-cover types
(Running et al. 2000).

5.2 Optimal validation data sets

The Pearson r-value for the optimal validation data sets corresponds to a coefficient
of determination of 0.23 for the five-SV optimal validation data set with an N of 17
090 and of 0.30 for the eight-SV optimal validation data set with an N of 2436. These
values are lower than the results obtained by Nightingale et al. (2007) and Zhang and
Kondragunta (2006), who reported R2 of 0.85 and 0.58, respectively. These results
are lower than the R2 of 0.58 that Zhang and Kondragunta (2006) found between
MODIS predictions and FIA measures of biomass at the scale of US states. Their
better results may be due to lower errors for biomass than for either GPP or NPP,
or simply that errors decrease when measurements are aggregated to larger areas.
The results were much lower than the R2 of 0.85 that Nightingale et al. (2007) found
between MODIS GPP and those generated using a simple process-based model at the
scale of a level-one ecoregion containing five forest classes. However, the much better
results of Nightingale et al. (2007) lacked true independence as the two data sets that
they compared shared some of the same input data.

The 17 090 FIA plots and co-located MODIS pixels in the statistically significant
validation data set appear to be a representative sub-sample of the Original 61 317
plots and pixels in terms of both species composition and spatial distribution of plots.
As the Original data set itself was designed to provide reliable estimates for large
sampling areas, the same could now be said of the optimal validation data set for
representation of the whole of the eastern USA.

The residuals of the relation between MODIS GPP and FIA NPP indicate that AR
is not a constant proportion of GPP as suggested by some (Waring et al. 1998) but is
a varying proportion as suggested by others (DeLucia et al. 2007). The negative resid-
uals shown in the northern area indicate that the observed MODIS GPP is lower than
the predicted GPP as a linear function of FIA NPP, while the positive residuals mean
a higher observed MODIS GPP than that predicted by FIA NPP. Therefore, the resid-
ual map indicates that AR is highest in the southern states where the climate is hot and
wet and decreases to the north and west as the temperature and precipitation decrease.
These patterns conform to the ecological explanation that plants growing under cooler
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6144 Y. Kwon and C. P. S. Larsen

and drier conditions need to expend less energy on sustaining living biomass (Ryan
et al. 1994, Teskey et al. 1995). Since these results indicate non-linear relations between
GPP and NPP, the sequential z-value approach was also done using non-parametric
Spearman correlations; the results indicated the same order of importance of SVs.

5.3 Spatial mismatch

A key motivation for this research was to address the inherent scaling mismatches
between the MODIS and FIA data sets (Cohen et al. 2003), without scaling the data
up to larger spatial units (Zhang and Kondragunta 2006) or using bridging remote-
sensing products (Muukkonen and Heiskanen 2007). Instead, the mismatch between
MODIS pixels and FIA plots was addressed by applying SVs to maximize com-
patibility between the two spatial units, while maintaining the plot- and pixel-scale
resolution. In this regard, it is interesting that the four SVs that focused on spatial
mismatches (SVs 3a, 3b, 4a and 4b) had the least influence on the Pearson r-value, sug-
gesting that the issue of spatial mismatch may not be as important as is ensuring data
quality (SVs 1 and 2) and data compatibility (SVs 5 and 6). However, it is also possible
that some SVs regarding spatial mismatch could have been improved through more
judicious application as noted in table 6. Restricting analyses to just homogeneous
plots, however, would greatly limit the types of forests that would be studied.

5.4 Prospective SVs

There are a number of possible SVs that could be developed to potentially improve
the validation of MODIS GPP with FIA NPP. First, MODIS GPP upstream products
such as LAI and f PAR could be related to FIA stand-level attributes such as ‘crown
class’ or ‘stand size class’; however, at present, they are unsuitable because they are not
estimated rigorously and contain many missing values. Second, soil properties could
also provide a valuable SV because tree growth is highly affected by soil conditions.
FIA NPP has been related to physical and chemical properties of soil (Jackson et al.
2000, Schwarzel et al. 2009), and MODIS GPP was overestimated in areas of infertile
soils with limited water storage capacity (Nightingale et al. 2007). It will become pos-
sible to explore relations between soil characteristics of FIA plots and MODIS pixels
when sufficient FIA plots have been inventoried as part of the forest health moni-
toring inventory (FIA phase 3). Third, MODIS GPP estimates could be improved,
especially in topographically diverse areas, if meteorological inputs such as tempera-
ture and vapour deficit were obtained from finer spatial resolution sources than the
1◦ latitude × 1.25◦ longitude DAO inputs that are currently used. The application of
these additional SVs should result in further improvements to the optimal validation
data set.

6. Conclusions

The results of this study highlight five key considerations in the method that uses FIA
plot-level and MODIS pixel-level primary productions. First, the application of simple
quality checks for both MODIS (SV 1) and FIA (SV 2) should be employed by all
studies using these types of data for analyses of tree growth. Second, poor correlations
between the two data sets during the mid-summer add further evidence to the belief
that the MODIS signal becomes saturated at high levels of productivity, which would
result in underestimation of summer productivity. As this could result in it providing
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erroneous information to carbon budgets, this issue requires serious attention. Third,
the better validation of MODIS GPP predictions for dense and homogeneous forests
indicates the applicability of FIA plot-level attributes to minimize scaling mismatches
between MODIS and FIA data. Fourth, the systematically selected network of FIA
ground plots shows good representation of the larger MODIS pixels. Fifth, latitudinal
variation in the residuals of the relationship between MODIS GPP and FIA NPP
indicates that respiration is a varying portion of GPP. In sum, the optimal validation
data set suggests that MODIS GPP is more strongly validated for certain conditions
than for others, and that changes in its algorithms should be made to improve its
predictions.

References
ANDERSON, T.W. and DARLING, D.A., 1952, Asymptotic theory of certain ‘goodness-of-

fit’ criteria based on stochastic processes. Annals of Mathematical Statistics, 23,
pp. 193–212.

BAILEY, R.G., 1995, Descriptions of the Ecoregions of the United States, 2nd ed. Miscellaneous
Publication No. 1391, 108 p. (Washington, DC: US Department of Agriculture, Forest
Service).

BECHTOLD, W.A. and PATTERSON, P.L. (Eds.), 2005, The Enhanced Forest Inventory and
Analysis Program – National Sampling Design and Estimation Procedures (Asheville,
NC: Forest Service, Department of Agriculture, Southern Research Station).

BETTINGER, P., CLUTTER, M., SIRY, J., KANE, M. and PAIT, J., 2009, Broad implications of
southern United States pine clonal forestry on planning and management of forests.
International Forestry Review, 11, pp. 331–345.

BIRDSEY, R.A., 1996, Carbon storage for major forest types and regions in the conterminous
United States. American Forests, 2, pp. 261–371.

BLACKARD, J.A., FINCO, M.V., HELMER, E.H., HOLDEN, G.R., HOPPUS, M.L., JACOBS,
D.M., LISTER, A.J., MOISEN, G.G., NELSON, M.D., RIEMANN, R., RUEFENACHT,
B., SALAJANU, D., WEYERMANN, D.L., WINTERBERGER, K.C., BRANDEIS, T.J.,
CZAPLEWSKI, R.L., MCROBERTS, R.E., PATTERSON, P.L. and TYMCIO, R.P.,
2008, Mapping US forest biomass using nationwide forest inventory data
and moderate resolution information. Remote Sensing of Environment, 112, pp.
1658–1677.

BROWN, S.L. and SCHROEDER, P.E., 1999, Spatial patterns of aboveground production
and mortality of woody biomass for eastern US forests. Ecological Applications, 9,
pp. 968–980.

CHAPIN, F.S., MATSON, P.A., MOONEY, H.A. and CHAPIN, M.C., 2002, Principles of Terrestrial
Ecosystem Ecology (New York: Springer-Verlag).

CLARK, D.A., BROWN, S., KICKLIGHTER, D.W., CHAMBERS, J.Q., THOMLINSON, J.R. and NI,
J., 2001, Measuring net primary production in forests: concepts and field methods.
Ecological Applications, 11, pp. 356–370.

COHEN, W.B., MAIERSPERGER, T.K., YANG, Z.Q., GOWER, S.T., TURNER, D.P., RITTS, W.D.,
BERTERRETCHE, M. and RUNNING, S.W., 2003, Comparisons of land cover and LAI
estimates derived from ETM plus and MODIS for four sites in North America: a quality
assessment of 2000/2001 provisional MODIS products. Remote Sensing of Environment,
88, pp. 233–255.

DELUCIA, E.H., DRAKE, J.E., THOMAS, R.B. and GONZALEZ-MELER, M., 2007, Forest carbon
use efficiency: is respiration a constant fraction of gross primary production? Global
Change Biology, 13, pp. 1157–1167.

DEWAR, R.C., MEDLYN, B.E. and MCMURTRIE, R.E., 1998, A mechanistic analysis of light and
carbon use efficiencies. Plant Cell and Environment, 21, pp. 573–588.

D
ow

nl
oa

de
d 

by
 [

U
ni

ve
rs

ity
 o

f 
D

el
aw

ar
e]

 a
t 1

3:
09

 1
7 

O
ct

ob
er

 2
01

2 



6146 Y. Kwon and C. P. S. Larsen

DROLET, G.G., HUEMMRICH, K.F., HALL, F.G., MIDDLETON, E.M., BLACK, T.A., BARR, A.G.
and MARGOLIS, H.A., 2005, A MODIS-derived photochemical reflectance index to
detect inter-annual variations in the photosynthetic light-use efficiency of a boreal
deciduous forest. Remote Sensing of Environment, 98, pp. 212–224.

FISHER, R.A., 1921, On the ‘Probable error’ of a coefficient of correlation deduced from a small
sample. Metron, 1, pp. 3–32.

GILLIS, M.D., OMULE, A.Y. and BRIERLEY, T., 2005, Monitoring Canada’s forests: the national
forest inventory. Forestry Chronicle, 81, pp. 214–221.

HEINSCH, F.A., ZHAO, M.S., RUNNING, S.W., KIMBALL, J.S., NEMANI, R.R., DAVIS, K.J.,
BOLSTAD, P.V., COOK, B.D., DESAI, A.R., RICCIUTO, D.M., LAW, B.E., OECHEL,
W.C., KWON, H., LUO, H.Y., WOFSY, S.C., DUNN, A.L., MUNGER, J.W., BALDOCCHI,
D.D., XU, L.K., HOLLINGER, D.Y., RICHARDSON, A.D., STOY, P.C., SIQUEIRA, M.B.S.,
MONSON, R.K., BURNS, S.P. and FLANAGAN, L.B., 2006, Evaluation of remote sens-
ing based terrestrial productivity from MODIS using regional tower eddy flux net-
work observations. IEEE Transactions on Geoscience and Remote Sensing, 44, pp.
1908–1925.

HOUGHTON, R.A., BUTMAN, D., BUNN, A.G., KRANKINA, O.N., SCHLESINGER, P. and STONE,
T.A., 2007, Mapping Russian forest biomass with data from satellites and forest inven-
tories. Environmental Research Letters, 2, 045032, doi:10.1088/1748-9326/2/4/045032.

JACKSON, R.B., SPERRY, J.S. and DAWSON, T.E., 2000, Root water uptake and transport: using
physiological processes in global predictions. Trends in Plant Science, 5, pp. 482–488.

JENKINS, J.C., BIRDSEY, R.A. and PAN, Y., 2001, Biomass and NPP estimation for the mid-
Atlantic region (USA) using plot-level forest inventory data. Ecological Applications,
11, pp. 1174–1193.

LANDSBERG, J.J., JOHNSEN, K.H., ALBAUGH, T.J., ALLEN, H.L. and MCKEAND, S.E., 2001,
Applying 3-PG, a simple process-based model designed to produce practical results, to
data from loblolly pine experiments. Forest Science, 47, pp. 43–51.

LAW, B.E., WARING, R.H., ANTHONI, P.M. and ABER, J.D., 2000, Measurements of gross and
net ecosystem productivity and water vapour exchange of a Pinus ponderosa ecosystem,
and an evaluation of two generalized models. Global Change Biology, 6, pp. 155–168.

LOTSCH, A., TIAN, Y., FRIEDL, M.A. and MYNENI, R.B., 2003, Land cover mapping in support
of LAI and FPAR retrievals from EOS-MODIS and MISR: classification methods and
sensitivities to errors. International Journal of Remote Sensing, 24, pp. 1997–2016.

LU, D.S., 2006, The potential and challenge of remote sensing-based biomass estimation.
International Journal of Remote Sensing, 27, pp. 1297–1328.

MCROBERTS, R.E., 2008, Using satellite imagery and the k-nearest neighbors technique as
a bridge between strategic and management forest inventories. Remote Sensing of
Environment, 112, pp. 2212–2221.

MCROBERTS, R.E., BECHTOLD, W.A., PATTERSON, P.L., SCOTT, C.T. and REAMS, G.A., 2005a,
The enhanced forest inventory and analysis program of the USDA Forest Service: his-
torical perspective and announcement of statistical documentation. Journal of Forestry,
103, pp. 304–308.

MCROBERTS, R.E., HOLDER, G.R., NELSON, M.D., LIKNES, G.C., MOSER, W.K., LISTER, A.J.,
KING, S.L., LAPOIINT, E.B., COULSTON, J.W., SMITH, W.B. and REAMS, G.A., 2005b,
Estimating and circumventing the effects of perturbing and swapping forest inventory
plot locations. Journal of Forestry, 103, pp. 275–279.

MORISETTE, J.T., PRIVETTE, J.L. and JUSTICE, C.O., 2002, A framework for the validation of
MODIS land products. Remote Sensing of Environment, 83, pp. 77–96.

MURPHY, H.T., VANDERWAL, J. and LOVETT-DOUST, J., 2010, Signatures of range expansion
and erosion in eastern North American trees. Ecology Letters, 13, pp. 1233–1244.

MUUKKONEN, P. and HEISKANEN, J., 2007, Biomass estimation over a large area based on
standwise forest inventory data and ASTER and MODIS satellite data: a possibility
to verify carbon inventories. Remote Sensing of Environment, 107, pp. 617–624.

D
ow

nl
oa

de
d 

by
 [

U
ni

ve
rs

ity
 o

f 
D

el
aw

ar
e]

 a
t 1

3:
09

 1
7 

O
ct

ob
er

 2
01

2 



MODIS GPP validation and FIA plot-scale NPP measures 6147

MYNENI, R.B., KNYAZIKHIN, Y., PRIVETTE, J.L. and GLASSY, J., 2002, Global products of
vegetation leaf area and fraction absorbed PAR from year one of MODIS data. Remote
Sensing of Environment, 83, pp. 214–231.

NAKAWATASE, J.M. and PETERSON, D.L., 2006, Spatial variability in forest growth–climate rela-
tionships in the Olympic Mountains, Washington. Canadian Journal of Forest Research,
36, pp. 77–91.

NEMANI, R.R., KEELING, C.D., HASHIMOTO, H., JOLLY, W.M., PIPER, S.C., TUCKER, C.J.,
MYNENI, R.B. and RUNNING, S.W., 2003, Climate-driven increases in global terrestrial
net primary production from 1982 to 1999. Science, 300, pp. 1560–1563.

NIGHTINGALE, J.M., COOPS, N.C., WARING, R.H. and HARGROVE, W.W., 2007, Comparison
of MODIS Gross Primary Production estimates for forests across the U.S.A. with those
generated by a simple process model, 3-PGS. Remote Sensing of Environment, 109, pp.
500–509.

PHILLIPS, D.L., BROWN, S.L., SCHROEDER, P.E. and BIRDSEY, R.A., 2000, Toward error anal-
ysis of large-scale forest carbon budgets. Global Ecology and Biogeography, 9, pp.
305–313.

POTTER, C., KLOOSTER, S., HUETE, A. and GENOVESE, V., 2007, Terrestrial carbon sinks for
the United States predicted from MODIS satellite data and ecosystem modeling. Earth
Interactions, 11, pp. 1–21.

POTTER, C.S., RANDERSON, J.T., FIELD, C.B., MATSON, P.A., VITOUSEK, P.M., MOONEY, H.A.
and KLOOSTER, S.A., 1993, Terrestrial ecosystem production: a process model based on
global satellite and surface data. Global Biogeochemical Cycles, 7, pp. 811–841.

POWELL, S.L., COHEN, W.B., HEALEY, S.P., KENNEDY, R.E., MOISEN, G.G., PIERCE, K.B.
and OHMANN, J.L., 2010, Quantification of live aboveground forest biomass dynamics
with Landsat time-series and field inventory data: a comparison of empirical modeling
approaches. Remote Sensing of Environment, 114, pp. 1053–1068.

PRINCE, S.D. and GOWARD, S.N., 1995, Global primary production: a remote sensing approach.
Journal of Biogeography, 22, pp. 815–835.

REICH, P.B., TJOELKER, M.G., MACHADO, J.L. and OLEKSYN, J., 2006, Universal scaling of
respiratory metabolism, size and nitrogen in plants. Nature, 441, pp. 902–902.

RUNNING, S.W., THORNTON, P.E., NEMANI, R. and GLASSY, J.M., 2000, Global terrestrial
gross and net primary productivity from the Earth Observing System. In Methods
in Ecosystem Science, O. Sala, R. Jackson, H.A. Mooney and R.W. Howarth (Eds.),
pp. 44–57 (New York: Springer-Verlag).

RYAN, M.G., LINDER, S., VOSE, J.M. and HUBBARD, R.H., 1994, Dark respiration of pines.
Ecological Bulletin, 43, pp. 50–63.

SCHWARZEL, K., FEGER, K.H., HANTZSCHEL, J., MENZER, A., SPANK, U., CLAUSNITZER,
F., KOSTNER, B. and BERNHOFER, C., 2009, A novel approach in model-based map-
ping of soil water conditions at forest sites. Forest Ecology and Management, 258,
pp. 2163–2174.

STEINBERG, D.C. and GOETZ, S., 2009, Assessment and extension of the MODIS FPAR prod-
ucts in temperate forests of the eastern United States. International Journal of Remote
Sensing, 30, pp. 169–187.

TESKEY, R.O., SHERFF, D.W., HOLLINGER, D.Y. and THOMAS, R.B., 1995, External and inter-
nal factors regulating photosynthesis. In Resource Physiology of Conifers, W.K. Smith
and T.M. Hinckley (Eds.), pp. 105–140 (New York: Academic Press).

TOMPPO, E., OLSSON, H., STAHL, G., NILSSON, M., HAGNER, O. and KATILA, M., 2008,
Combining national forest inventory field plots and remote sensing data for forest
databases. Remote Sensing of Environment, 112, pp. 1982–1999.

TURNER, D.P., KOERPER, G.J., HARMON, M.E. and LEE, J.J., 1995, A carbon budget for forests
of the conterminous United States. Ecological Applications, 5, pp. 421–436.

TURNER, D.P., RITTS, W.D., COHEN, W.B., GOWER, S.T., ZHAO, M.S., RUNNING, S.W., WOFSY,
S.C., URBANSKI, S., DUNN, A.L. and MUNGER, J.W., 2003, Scaling Gross Primary

D
ow

nl
oa

de
d 

by
 [

U
ni

ve
rs

ity
 o

f 
D

el
aw

ar
e]

 a
t 1

3:
09

 1
7 

O
ct

ob
er

 2
01

2 



6148 Y. Kwon and C. P. S. Larsen

Production (GPP) over boreal and deciduous forest landscapes in support of MODIS
GPP product validation. Remote Sensing of Environment, 88, pp. 256–270.

TURNER, D.P., RITTS, W.D., COHEN, W.B., MAEIRSPERGER, T.K., GOWER, S.T., KIRSCHBAUM,
A.A., RUNNING, S.W., ZHAO, M.S., WOFSY, S.C., DUNN, A.L., LAW, B.E., CAMPBELL,
J.L., OECHEL, W.C., KWON, H.J., MEYERS, T.P., SMALL, E.E., KURC, S.A. and GAMON,
J.A., 2005, Site-level evaluation of satellite-based global terrestrial gross primary pro-
duction and net primary production monitoring. Global Change Biology, 11, pp.
666–684.

USDA FOREST SERVICE, 2003, Land Areas of the National Forest System (Washington, DC:
USDA Forest Service). Available online at: http://www.fs.fed.us/land/staff/lar/LAR03/
lar03index.htm

WARING, R.H., LANDSBERG, J.J. and WILLIAMS, M., 1998, Net primary production of forests:
a constant fraction of gross primary production? Tree Physiology, 18, pp. 129–134.

XIAO, C.W., YUSTE, J.C., JANSSENS, I.A., ROSKAMS, P., NACHTERGALE, L.C.A., SANCHEZ,
B.Y. and CEULEMANS, R., 2003, Above and belowground biomass and net primary
production in a 73-year old Scots pine forest. Tree Physiology, 23, pp. 505–516.

XIAO, J.F., ZHUANG, Q.L., BALDOCCHI, D.D., LAW, B.E., RICHARDSON, A.D., CHEN, J.Q.,
OREN, R., STARR, G., NOORMETS, A., MA, S.Y., VERMA, S.B., WHARTON, S., WOFSY,
S.C., BOLSTAD, P.V., BURNS, S.P., COOK, D.R., CURTIS, P.S., DRAKE, B.G., FALK,
M., FISCHER, M.L., FOSTER, D.R., GU, L.H., HADLEY, J.L., HOLLINGER, D.Y.,
KATUL, G.G., LITVAK, M., MARTIN, T.A., MATAMALA, R., MCNULTY, S., MEYERS,
T.P., MONSON, R.K., MUNGER, J.W., OECHEL, W.C., PAW, U.K.T., SCHMID, H.P.,
SCOTT, R.L., SUN, G., SUYKER, A.E. and TORN, M.S., 2008, Estimation of net ecosys-
tem carbon exchange for the conterminous United States by combining MODIS and
AmeriFlux data. Agricultural and Forest Meteorology, 148, pp. 1827–1847.

YANG, F.H., ICHII, K., WHITE, M.A., HASHIMOTO, H., MICHAELIS, A.R., VOTAVA, P., ZHU,
A.X., HUETE, A., RUNNING, S.W. and NEMANI, R.R., 2007, Developing a continental-
scale measure of gross primary production by combining MODIS and AmeriFlux data
through Support Vector Machine approach. Remote Sensing of Environment, 110, pp.
109–122.

YANG, W.Z., TAN, B., HUANG, D., RAUTIAINEN, M., SHABANOV, N.V., WANG, Y., PRIVETTE,
J.L., HUEMMRICH, K.F., FENSHOLT, R., SANDHOLT, I., WEISS, M., AHL, D.E., GOWER,
S.T., NEMANI, R.R., KNYAZIKHIN, Y. and MYNENI, R.B., 2006, MODIS leaf area index
products: from validation to algorithm improvement. IEEE Transactions on Geoscience
and Remote Sensing, 44, pp. 1885–1898.

ZHANG, X. and KONDRAGUNTA, S., 2006, Estimating forest biomass in the USA using gener-
alized allometric models and MODIS land products. Geophysical Research Letters, 33,
L09402, doi:10.1029/2006GL025879.

ZHAO, M., HEINSCH, R.A., NEMANI, R.R. and RUNNING, S.W., 2005, Improvements of the
MODIS terrestrial gross and net primary production global data set. Remote Sensing
of Environment, 95, pp. 164–176.

ZHENG, D.L., HEATH, L.S. and DUCEY, M.J., 2007, Forest biomass estimated from MODIS
and FIA data in the Lake States: MN, WI and MI, USA. Forestry, 80, pp. 265–278.

ZHENG, D.L., HEATH, L.S. and DUCEY, M.J., 2008, Spatial distribution of forest aboveground
biomass estimated from remote sensing and forest inventory data in New England,
USA. Journal of Applied Remote Sensing, 2, 021502s, doi:10.1117/1.2940686.

D
ow

nl
oa

de
d 

by
 [

U
ni

ve
rs

ity
 o

f 
D

el
aw

ar
e]

 a
t 1

3:
09

 1
7 

O
ct

ob
er

 2
01

2 

http://www.fs.fed.us/land/staff/lar/LAR03/lar03index.htm
http://www.fs.fed.us/land/staff/lar/LAR03/lar03index.htm



