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Abstract This research assessed the accuracy of the
moderate resolution imaging spectroradiometer’s
(MODIS) land cover classification of softwood and
hardwood using a fuzzy-based approach for 31 eastern-
most states in the U.S. Our main objective was to
quantitatively evaluate spatially explicit land cover clas-
sifications of MODIS net primary product (NPP)
scheme using the USDA Forest Service’s (FS) field-
based, tree-specific Forest Inventory Analysis (FIA).
We used a grid of 648 km2 hexagons as base mapping
units and interpreted our results at the USDA FS level
IV ecological regions. Forest area was calculated for
both MODIS and FIA and were found to be strongly
correlated (Pearson’s r = 0.875, p < 0.01), which sug-
gests the two classifications are comparable. Area-based
fuzzy memberships of softwood and hardwood forest
were determined for both MODIS and FIA for each
hexagon. We used cross-entropy (Hc) to evaluate the
accuracy of the MODIS classification. Our results de-
termined that the accuracy of MODIS forest cover clas-
sification was not uniform for all ecological regions.

Tree species importance values (IV) and Shannon’s
diversity index (Hs) were calculated to examine species
abundance and heterogeneity, which may partially ex-
plain discrepancies between MODIS and FIA classifi-
cations. The greatest misclassifications were due to (1)
MODIS underestimating softwood forest cover and (2)
MODIS confusing forest cover with other land covers
such as grassland, cropland, or woody savanna. Our
results provide a guideline for users to understand the
degree of uncertainty of MODIS forest cover classifica-
tions in the eastern USA.

Keywords Fuzzy classification .MODIS . FIA . Field
data . Cross-entropy

Introduction

The continuous monitoring of carbon cycle across
Earth’s entire vegetated land surface is a primary goal
of Terra MODIS (or moderate resolution imaging
spectroradiometer). With the on-going climate change,
to better understand forest dynamics and its carbon cycle
is important for managing timberland for the forest
industry (Keenan 2015), balancing the carbon budget
(Schaphoff et al. 2016), exploring the human-
environment interactions (Canadell et al. 2007), and
reacting to future climate change (Nemani et al. 2003;
Reyer et al. 2015).

MODIS provides a wide ranging standard suite of
global land products including reflectance (MOD09),
temperature/emissivity (MOD11), land cover
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classification (MOD12), vegetation index (MOD13),
leaf area index/fraction of photosynthetic active radia-
tion (MOD15), and derived modeled products of gross
primary production/net primary production (GPP/NPP)
(MOD17). Among the series of MODIS products,
MOD12 data play a critical role in modeling other
subsequent MODIS products. MOD17 algorithm, for
example, is based on the radiation use efficiency logic
(Monteith 1972) which relies heavily on the biome-
specific physiological efficiency conversion parameter
of ε based onMOD12 classification. TheMOD12 prod-
ucts of forest land covers have become especially im-
portant given the pace and extent of human-induced
deforestation and forest degradation. Any misclassifica-
tion of land covers are regarded as a major factor
resulting in high uncertainty of biomass/carbon budget
estimation.

Although MODIS land cover validation at a glob-
al scale has been updated yearly with improvements,
the efforts to evaluate regional scale classification in
U.S. forest are very limited. At global scale, the
accuracy of the International Geosphere Biosphere
Program (IGBP) classification—the primary land
cover scheme—of MODIS (Collection 5, current
version) is estimated to be 74.8% using cross-
validation of a training site database (Olofsson
et al. 2012; Stehman et al. 2012). At regional scale,
however, most validation efforts have been based on
finer spatial resolution imagery rather than field-
based ground truth data due to the small number of
standardized field data covering large geographic
extent._ENREF_30 Hao and Gen-Suo (2012)
assessed the spatial agreement between three
satellite-derived land cover products including
MODIS, global land cover 2000 (GLC2000), and
the National Land Cover/Use Datasets (NLCD) over
China from 1999 to 2000 and determined that
MODIS had greater spatial disagreement over re-
gions of heterogeneous vegetation. While MODIS
provides sub-classes of forest cover—evergreen
needleleaf, evergreen broadleaf, deciduous needleleaf,
and deciduous broadleaf—forest within MODIS pixels
are often consist of heterogeneous forest types without
identifiable discrete boundaries.

MODIS land cover validation requires extensive
in situ data collected from comprehensive research
and monitoring programs to derive and interpret
broad-scale environmental conditions. A promising
field-based MODIS validation candidate spatially

covering conterminous USA and temporally consis-
tent on a yearly basis is the Forest Inventory and
Analysis (FIA) data managed by the USDA Forest
Service. The FIA Program adopted a standardized
nationwide annual inventory methodology in 1998
that enables spatially unbiased and timely monitor-
ing of forest conditions (Bechtold 2005). This na-
tionwide FIA annual inventory has greatly improved
upon the less frequent state by state periodic inven-
tory, which used a variety of survey standards that
may have created biased geographic variations
across states.

The use of field-based FIA plot data is valuable
because it is completely independent from MODIS,
and its numerous arrays of ground plot network allow
the validation of various MODIS products across
many different plant community types and biophys-
ical conditions (Muukkonen and Heiskanen 2007).
However, the desired comparability between coarse
resolution of MODIS pixels (1 km by 1 km) and plot-
level FIA has been problematic due to inherent scal-
ing mismatches. The mismatch is that, while MODIS
products have its spatial resolution of 500 m to 1 km,
FIA data has spatial sampling intensity of one plot for
every 24.3 km2, with that plot itself having a total
area of 0.0041 km2 (McRoberts et al. 2005). Awidely
used technique to overcome spatial mismatches is to
bridge spatial gaps using intermediate spatial resolu-
tion data such as Landsat satellite (Townshend and
Justice 2002). However, this bridging approach prop-
agates uncertainty in the multi-step scaling up
process, and the spatial coverage is often limited to
only a few of the many plant community types
present in the USA. With the increasing needs of
FIA combined with various remote sensing
imageries, Riemann et al. (2010) provided a compre-
hensive assessment protocol for continuous variables
such as biomass estimates derived from FIA, but the
categorical land cover classification is not critically
examined where aggregation-related biases are
created and propagated in remote sensing data.

Kwon and Larsen (2012, 2013) demonstrated the
use of plot-level FIA data to validate pixel-level
MODIS-derived gross primary productivity (GPP)
estimates by applying a series of screening variables
of forest conditions recorded in FIA database (FIADB).
Although not spatially explicit, a higher agreement
of land cover classification between MODIS and
FIA resulted in better MODIS GPP prediction by
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FIA tree growth data. They classified species into
taxonomic subdivision-level class forest types (i.e.,
gymnosperm and angiosperm, hereafter softwood
and hardwood, respectively) by using cut off values
of 75%. For example, each FIA plot was classified
as hardwood or softwood if more than 75% of both
its basal area and number of stems were hardwood
or softwood, and plots containing <75% of one type
were classified as mixed forest. This hard classified
method, although commonly applied to both
MODIS and FIA, created a mid-latitude dominant
mixed forest type, which made the classification
accuracy difficult to interpret at the level of forest
types.

Fuzzy classification (or sub-pixel soft classifica-
tion), on the other hand, is fuzzy membership based
approach often used in mixed-class areas. Examples
include suburban land cover classification (Zhang
and Foody 1998), grassland classification (Sha et al.
2008), or the study of long-term vegetation changes
(Okeke and Karnieli 2006). Fuzzy classification uses
continuous zones of intermediate classes between the
end-member classes rather than imposing arbitrary
cut off values to delineate boundaries of the end-
member classes (Hill et al. 2007). We adopted fuzzy
membership concept evaluated by cross-entropy
values to overcome scaling mismatches between
MODIS and FIA.

The primary objective of this study is to evaluate
spatially explicit land cover classification of MODIS
(MOD12) using plot-based, tree-specific FIA data.
First, we develop area-based fuzzy membership to
derive spatially explicit forest types of softwood and
hardwood for both MODIS and FIA. Second, we
provide regional scale assessment of land cover
classification between MODIS and FIA using
cross-entropy values calculated at level-ІV ecologi-
cal regions and present descriptive results at level-III
ecological regions. Finally, we discuss the potential
cause of forest cover mismatches between two data
sets.

Materials

Mapping framework

The study area is the 31 easternmost U.S. states. We
use a grid of 648 km2 hexagons for the basic mapping

unit which had been used as the basis for the FIA
sampling design (McRoberts et al. 2005) to maintain
nationwide original FIA sampling intensity. The hex-
agonal grid framework, originally used in the Forest
Health Monitoring (FHM) program, systematically
aggregates plots and pixels independently from po-
tentially regular spaced landscape features (White
et al. 1992). We use ecological regions defined by
the USDA FS for the interpretation unit. Ecological
regions aggregate areas with similar characteristics
into homogeneous regions based on temperature,
precipitation, vegetation, natural land covers, and
terrain features._ENREF_21 ecological regions are
subdivided into four hierarchical levels, where each
successive level is comprised of smaller nested re-
gions. The study area is bounded by 12 level-III
provinces and 66 level-IV sections, which we used
to map spatial patterns that are difficult to represent at
the hexagon mapping unit. A U.S. ecological regions
shapefile was downloaded from the USDA FS
(http://www.fs.fed.us/rm/ecoregions/products/map-
ecoregions-united-states/). Hexagons are aggregated
to the closest level-IV ecological region, and fuzzy
memberships and cross-entropy values are averaged
for each ecological region.

FIA database

FIA program uses systematic five-year rolling annual
inventory system with the unified plot design. FIA
plot design consist of four 7.2 m fixed-radius sub-
plots to tally all trees with a diameter at breast height
(d.b.h) of at least 12.7 cm and each subplot contains a
microplot for seedlings and understory inventory
(Bechtold 2005). The locational accuracy issues
mandated by public law allowed perturbed latitude
and longitude of plot locations, and a swapped small
percentage of plots located on private lands with
another similar condition of private plot (McRoberts
et al. 2005; Woodall et al. 2009). However, these
issues will be negligible in this study since plots are
aggregated to large geographic extents, while these
location perturbations are randomly applied within a
0.8 km radius of the actual location. FIA program
manages tree census information such as the species,
size, and health of trees under the relational database
management system (RDBMS) to estimate status and
trends in forest area. The database is available to the
public via both Microsoft Access and plain text file
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format. FIA MS Access version of database (FIADB,
version 6.0) was downloaded for the 31 easternmost
U.S. states from the FIA DataMart (http://apps.fs.fed.
us/fiadb-downloads/datamart.html). We used the
most recent complete five-year inventory cycle as
most states inventoried from year 2009 to 2013.

MODIS NPP land cover (MOD12)

The MOD12 product supplies five classification
schemes at annual time steps and 500-m spatial res-
olution for 2001 to present. The primary land cover
scheme is provided by an IGBP land cover classifi-
cation (Friedl et al. 2010), and there are other classi-
fication schemes including the University of
Maryland classification scheme (Hansen et al.
2000), the MODIS-derived net primary production
(NPP) classification scheme described by Running
et al. (1994), the MODIS-derived LAI/fPAR Biome
scheme described by Myneni et al. (1997), and the
plant functional type (PFT) scheme described by
Bonan et al. (2002). We focus MODIS-derived net
primary production (NPP) classification scheme be-
cause this scheme does not use a mixed forest type
thus enables all species classified by either hardwood
or softwood. The NPP classification scheme com-
prises eight land cover types including water, ever-
green needleleaf, evergreen broadleaf, deciduous
needleleaf, deciduous broadleaf, annual broadleaf,
annual grass, non-vegetated land, and urban. NPP
forest pixels are reclassified as either hardwood or
softwood, and this allows a direct comparison to FIA
taxonomic subdivision-level tree classes through a
fuzzy membership agreement approach. MODIS da-
tabase (MOD12Q1, collection 5) was downloaded
for the 31 easternmost U.S. states from the USGS
Land Processes Distributed Active Archive Center
Data Pool (https://lpdaac.usgs.gov/data_access/data_
pool) . We used the year 2010 because this
represented the intermediate year of the FIA five-
year inventory cycle.

Methods

Matching forest categories between MODIS and FIA

We reclassified both MODIS forest related land cover
classes and FIA tree-level species code to softwood and

hardwood to match forest categories between MODIS
and FIA. MODIS forest type land covers are reclassified
from evergreen needleleaf and deciduous needleleaf
forest to softwoods, evergreen broadleaf and deciduous
broadleaf forest to hardwoods, respectively. Total 254
tree species identified for the eastern U.S. forest were
also manually grouped to either softwoods or hard-
woods using species group codes assigned to each tree
species. FIA database contains 54 species group codes
classified by eastern and western regions of softwood
and hardwood for reporting purposes.

Forest area calculation of FIA

We first calculated forest area by utilizing the plot-
specific area expansion factor (variable code
EXPCURR) and its adjustment factor (variable code
ADJ_EXPCURR) stored in PLOTSNAP table of
FIADB. The EXPCURR variable represents plot-
specific sampling intensity which can be interpreted
as the number of acres each plot represents. The area
adjustment factor (ADJ_EXPCURR) is used to com-
pensate for the proportion of plots not sampled due to
denied access or inaccessible locations. These areas
may differ each time new plots replaces older plots
under the annual inventory system. To calculate for-
est area, therefore, EXPCURR is multiplied by
ADJ_EXPCURR to estimate the forested area a plot
represents. Under the annual inventory system, most
states follow the EXPCURR value of approximately
6000 representing the sampling intensity of one plot
identified for approximately 6000 acres (~24.3 km2)
of forest area, which is based on the national preci-
sion of 3% per million acres in Eastern U. S.
(Bechtold 2005). There are five states—Minnesota,
Wisconsin, Delaware, Indiana, and Rhode Island—
that adopted a double sampling intensity, so their
EXPCURR is approximately half of other regular
states thus exceeds national standard precision. The
estimated area of each plot is then mapped as a
uniform circular shape centered at corresponding plot
coordinates. Finally, we calculated a percent of forest
area at each hexagon by spatially intersecting circular
area by hexagonal grid.

Fuzzy membership of FIA forest type

Fuzzy membership of softwood and hardwood is
constructed based on relative abundance of each
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species summed by softwood and hardwood within
648 km2 of hexagon. To calculate relative abun-
dance of species at hexagonal mapping units, we
first used per-acre basis tree expansion factor (vari-
able code TPA) stored in TREE table to standardize
actual area of measured plots. Different plot area is
possible when a plot includes individual subplots
where no accessible area is present. Under the cur-
rent fixed-plot designs, the TPA value is represented

by one tree equal to the inverse of the plot area in
acres as:

TPA ¼ 1

N*A
ð1Þ

where N is the number of subplots, and A is the area of
each subplot.

Then, we calculated species-level importance values
(IV) at each hexagon as follows:

IV xð Þ ¼ 0:5*
X

TPAi*BAi xð Þð Þ=
X

TPAi*BAi all speciesð Þð Þ þ 0:5*
X

TPAi*NSi xð Þð Þ=
X

TPAi*NSi all speciesð Þð Þ ð2Þ

where IV(x) is importance value of species x calculated
at a hexagon, TPAi is tree per acre at plot i, x is a
particular species in plot i, BA is basal area, and NS is
number of stems.

Given in Eq. 2, summation of softwood IV and
hardwood IV results in exclusive binomial member-
ship as summation of all species IV equals to one at a
hexagonal grid. Forest area of softwood and hard-
wood within a hexagon is then estimated as forest
area calculated from above section (forest area calcu-
lations of FIA) multiplied by membership of each
softwood and hardwood of IV. Finally, the area-
based fuzzy membership of softwood and hardwood
is calculated by forest area of softwood and hard-
wood within each hexagon divided by the area of
hexagonal grid (648 km2). The FIA area-based mem-
bership of each forest type ranges from 0 to 1.

Fuzzy membership of MODIS forest type

We first determine the total count of MODIS soft-
wood and hardwood pixels within each 648 km2

hexagonal grid. MOD12 pixels have a resampled
spatial resolution of 500 m resulting in each indi-
vidual pixel area of 0.25 km2. The total count of
softwood and hardwood pixels is then multiplied by
the above pixel area to determine the softwood and
hardwood forest area of each hexagon, respectively.
The total MODIS forest area within each hexagon is
calculated by summing the softwood and hardwood
areas. Area-based fuzzy membership of each forest
type is then simply calculated by MODIS actual area

of softwood and hardwood within each hexagon
divided by the area of 648 km2 hexagonal grid.
The MODIS area-based membership of each forest
type ranges from 0 to 1.

Fuzzy membership assessment

We first apply Pearson’s r correlation to FIA and
MODIS forest areas to determine if the two are
comparable. Then, we evaluate the accuracy of
area-based softwood and hardwood fuzzy member-
ship by applying an equation that measures cross-
entropy (Hc) between FIA and MODIS calculated as
(Foody 1995):

H c ¼ −
X

p xð Þlog2 p
0
xð Þ þ

X
p xð Þlog2 p xð Þ ð3Þ

where p is theMODIS forest type classification and p is
the FIA forest type classification.

A cross-entropy (Hc) value of zero indicates per-
fect agreement between the two classifications,
while increasing positive and negative values indi-
cate disagreement. Therefore, greater disagreement
occurs when values are further away from zero.

Forest heterogeneity and classification accuracy

To examine the overall influence of species heterogene-
ity to the MODIS classification accuracy, Shannon’s
diversity index (Hs) is calculated at each hexagonal grid.
The Hs value is commonly used to characterize species
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diversity in a community as it accounts for both abun-
dance and evenness of the species present and is calcu-
lated as (Begon et al. 1996):

H s ¼ −
X

pilnpi ð4Þ

where Hs is Shannon’s diversity index, pi is the
proportion of species i relative to the total number
of species, and ln is the natural logarithmic function.

The overall relationship between forest heterogeneity
calculated by Hs and classification accuracy by cross-
entropy (Hc) value at each hexagonal grid is then exam-
ined by Pearson’s r value.

Results

This study compares areas of softwood and hard-
wood land covers at a grid of 648 km2 hexagons
classified by MODIS and FIA to evaluate the agree-
ment between two data sets. Field-based FIA plot
data is used as ground truth reference to verify the
MODIS forest classifications. Fuzzy memberships
of forest area classified as softwood and hardwood
are calculated for both FIA and MODIS. Cross-
entropy analysis is implemented to evaluate the
agreement between both classifications. We first de-
scribe FIA and MODIS forest areas and fuzzy mem-
berships at the hexagonal mapping unit. Then, to
better highlight spatial patterns, we report FIA and
MODIS forest type classifications aggregated to 66
level-IV ecological regions (Supplementary material,
Table 1). We describe the spatial patterns based on
12 level-III ecological regions (Fig. 1).

Fuzzy membership of forest area

FIA and MODIS forest area shows similar geo-
graphic patterns (Fig. 2), and the forest areas at
hexagonal grids between two data sets are strongly
correlated (Pearson’s r = 0.875, p < 0.01). The
strong spatial agreement between MODIS and FIA
forest area confirms the compatibility of MODIS
and FIA data. This also reflects the improved na-
tional consistency of FIA, which was achieved
through a national sampling design and plot config-
uration adopted in annual FIA since 1998. The larg-
est forest areas for both FIA and MODIS are located
in the northeast, Upper-Midwest, along the

Appalachian Mountains, and in the southeast region
(Fig. 2). The smallest forest areas are the continental
interior, Mid-Atlantic, southern Florida, and the
Lower Mississippi River Valley for both classifica-
tions (Fig. 2). There are a few hexagons with sub-
stantial differences in forest area between FIA and
MODIS. Hexagons with greater FIA forest area
(Fig. 2a) than MODIS are mostly located in the
continental interior. Higher percentages of MODIS
forest area (Fig. 2b) than FIA are found in the
northeast, Upper-Midwest, and in the southern and
central Appalachians. Fuzzy memberships of soft-
wood and hardwood of both FIA and MODIS show
similar spatial patterns at the hexagonal grid (Figs. 3
and 4). While softwood forest types of FIA and
MODIS are mostly confined to the southeast, and
smaller areas are found in the northeast and Upper-
Midwest for both classifications (Fig. 3); FIA has
greater percentages and a larger spatial footprint of
softwood forest in all of these areas. MODIS fuzzy
membership for hardwood shows overall higher per-
centage than FIA with greater magnitude in the
southeast, Florida, northeast, along the Appalachian
Mountains, and in the Upper-Midwest (Fig. 4). FIA
fuzzy membership shows overall scattered low to
intermediate hardwood percentages (15 to 71%)
throughout study area except in continental interior
region (greater than 72%) (Fig. 4).

FIA classification by ecological region

FIA shows lower percentages of softwood forest
area in the USA compared to hardwood. A latitudi-
nal gradient is shown, with higher softwood percent-
ages located at southern and northern latitudes, and
lower softwood percentages in the middle latitudes
(Fig. 5a). Regions in the southern latitudes that have
the highest percentage of softwood forest area (26 to
49%) include the Southeastern Mixed Forest,
Ouachita Mixed Forest, and Outer Coastal Plain. In
the northern latitudes, the Laurentian Mixed Forest
and Adirondack regions are classified as 26 to 57%
softwood. The continental interior in the middle
latitudes has the least amount of forest area classi-
f i ed as sof twood . The Eas t e rn Broad lea f
(Continental), Eastern Broadleaf (Oceanic), Prairie
Parkland, and Eastern Broadleaf (Oceanic) in the
Mid-Atlantic are classified as less than 8% soft-
wood. The FIA data shows a northeast to southwest
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gradient of hardwood forest along the Appalachian
Mountains (Fig. 6a). Between 43 and 99% of the
forest area is classified as hardwood for both the
Eastern Broadleaf (Oceanic), Central Appalachian,
Adirondack, and Eastern Broadleaf (Continental) re-
gions. The Southeastern Mixed Forest, Eastern
Broadleaf (Continental), Ozark Mixed Forest, and
Laurentian Mixed Forest are classified as 29 to
56% hardwood. The regions with the least amount
of forest area classified as hardwood are along
coastal regions and in the Midwest. The Outer
Coastal Plain, Everglades, Prairie Parkland, and
Eastern Broadleaf (Continental) in the Midwest have
the lowest percentages (less than 28%) of forest area
classified as hardwood.

MODIS classification by ecological region

Most of the forest area classified as softwood by
MODIS is confined to regions in the southeast,
northeast, and Upper-Midwest (Fig. 5b). This pat-
tern is similar to the latitudinal gradient shown by
the FIA softwood classification, but the spatial ex-
tent of the MODIS classification is not as extensive.
The maximum percentages of MODIS softwood (42
to 49%) occur in the Laurentian Mixed Forest in the
Upper-Midwest. The Laurentian Mixed Forest has
the highest softwood percentages in the northern
latitudes between 17 and 49%. The highest percent-
age of softwood forest in the southern latitudes
occurs in the Southeastern Mixed Forest and the

Fig. 1 Twelve EPA level-II
ecological regions covering 31
easternmost states
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Outer Coastal Plain (17 to 33%). The lowest soft-
wood percentages (<8%) are found in the Eastern
Broadleaf (Oceanic), Eastern Broadleaf (Continental),
Prairie Parkland, Adirondack, Lower Mississippi
Riverine Forest, Outer Coastal Plain, and Ouachita
Mixed Forest. Similar to the FIA hardwood forest area,
MODIS hardwood classifications shows a northeast to
southwest gradient (Fig. 6b). One exception to this
gradient is the Lower Mississippi Riverine Forest,
which has a lower percentage (29 to 42%) of forest area
classified as hardwood. The Central Appalachian,
Adirondack, and Laurentian regions have the highest
percentages of hardwood forests with 86 to 99%. Along
the same linear gradient, the Southeastern Mixed Forest
and Eastern Broadleaf (Continental), Ozark Broadleaf
Forest, Ouachita Mixed Forest regions are classified as
57 to 85% hardwood forest. The continental interior has
the lowest percentages (less than 28%) of hardwood

forest area. These regions include Prairie Parkland and
the Eastern Broadleaf (Continental).

Comparison between FIA and MODIS

An examination of FIA and MODIS softwood
forest area (Fig. 5) shows a similar spatial pattern
between both classifications, but FIA classified
more forest area as softwood compared to
MODIS. A latitudinal gradient of higher percent-
ages of softwood forest area is found at southern
and northern latitudes. These are separated by
lower softwood percentages in the middle lati-
tudes. Although the general softwood spatial pattern is
similar between the two classifications, MODIS is more
confined to the Outer Coastal Plain and Southeastern
Mixed Forest in the southern latitudes. Higher softwood

Fig. 2 Percent of forest area of each 648 km2 hexagon classified by a FIA and b MODIS. Class breaks determined using seven equal
intervals
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percentages classified by both FIA andMODIS are found
in the Northeast and Upper-Midwest. FIA has higher
softwood percentages compared to MODIS in the
Southeastern Mixed Forest, Ozark Broadleaf, Outer
Coastal Plain, Ouachita Mixed Forest, Laurentian
Mixed Forest, Eastern Broadleaf (Oceanic), Everglades,
Central Appalachian Mixed Forest, and Adirondack
regions.

A comparison of FIA and MODIS hardwood
forest classifications (Fig. 6) shows similar spatial
patterns, but there are noticeable differences. A
northeast to southwest gradient of maximum per-
centages of hardwood forest area is indicated by
both classifications. The gradient follows along the
Appalachian Mountains into the lower Mississippi
River Valley. The lowest percentages of hardwood
forest are located in the continental interior for both

classifications. A major difference between FIA and
MODIS hardwood forest is in the Adirondack and
Laurentian regions in the Northeast, Outer Coastal
Plain Mixed Forest, and the Southeastern Mixed
Forest, where MODIS has higher hardwood percent-
ages. FIA has higher percentages of hardwood forest
in both Easter Broadleaf (Continental) and Prairie
Parkland regions.

Fuzzy membership assessment

Cross-entropy values (Hc) are calculated to deter-
mine agreement or disagreement between FIA and
MODIS. Hc values near zero suggest that FIA and
MODIS are in close agreement, and increasing
positive and negative values suggest disagreement.
Positive Hc values mean that MODIS classified a

Fig. 3 Fuzzy membership of softwood forest (%) of each 648 km2 hexagon classified by a FIA and b MODIS. Class breaks determined
using seven equal intervals
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higher percentage of one forest type compared to
FIA. Negative Hc values mean that FIA classified
a higher percentage of one forest type compared to
MODIS. For example, the Eastern Broadleaf
Forest (Continental) has negative Hc values
(−0.13 to 0.00) because FIA classified the region
with higher percentages of hardwood forest (14 to
42%) compared to MODIS (0 to 28%).

An examination of Hc values (Fig. 7) determined the
highest disagreement occurs in the Southeast, Northeast,
and along the Gulf Coast. The Adirondacks, Laurentian
Mixed Forest, Everglades, Outer Coastal Plain,
Ouachita Mixed Forest, and Southeastern Mixed
Forest regions have the largest values (0.43 to 0.84),
and therefore, the greatest disagreement. Large Hc

values (0.15 to 0.42) are found in the Laurentian
Mixed Forest, Eastern Broadleaf (Continental) in the
southern Appalachians, and Eastern Broadleaf

(Oceanic) forests in the northeast. Better agreement
between FIA and MODIS is found in the continental
interior, central Appalachians, and in the Mid-Atlantic.
The Central Appalachian, Lower Mississippi Riverine
Valley, Eastern Broadleaf (Oceanic), and Ozark Mixed
Forest each have Hc values between 0.01 and 0.14, and
negative Hc values (−0.13 to 0.00) are found in Prairie
Parkland and Eastern Broadleaf (Continental), and
Eastern Broadleaf (Oceanic) regions.

Heterogeneity to classification accuracy

We examined overall relationship between forest het-
erogeneity calculated by Shannon’s diversity index (Hs)
and classification accuracy by cross-entropy (Hc) value
using Pearson’s r value. The average Hs value of all
hexagonal grids was 2.29 with standard deviation of

Fig. 4 Fuzzy membership of hardwood forest (%) of each 648 km2 hexagon classified by a FIA and b MODIS. Class breaks determined
using seven equal intervals
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0.39, and the average Hc value was 0.14 with standard
deviation of 0.32. The relationship between the diversity
(Hs) and the cross-entropy (Hc) was positively correlat-
ed (Pearson’s r = 0.21, p < 0.01) meaning disagreement
between FIA and MODIS increased with heterogeneity
of species composition but the correlation was rather
weak. This weak correlation may imply that while
MODIS provides reliable taxonomic subdivision-level
classification, its pixel resolution is not comparable to
species level classification. In order to determine error
patterns, more regional scale validation efforts are
needed.

Discussion

To better discuss the agreement between MODIS
and FIA forest classification, we examined species

level IVs at each hexagonal grid and the MODIS
IGBP scheme of land covers which include 17 total
land cover classes. The reason we examined the
IGBP scheme is because the MODIS NPP scheme
does not include any non-forest or non-urban clas-
ses, thus it is difficult to determine confusion errors
between forest and non-forest classes such as grass-
lands or croplands.

In terms of forest cover discrepancy between
MODIS and FIA, when averaged by level-IV eco-
logical regions, FIA estimated slightly higher
(mean 2.03%) forest cover than MODIS with a
confidence interval of ±0.21% (p < 0.05). The
only ecological region beyond the confidence in-
terval disagreement was Lake Agassiz, Aspen
Parklands Section in Minnesota, where FIA esti-
mated 23% higher forest cover than MODIS. FIA
estimated total forest cover in that ecological

Fig. 5 Fuzzy membership of softwood forest (%) classified by a FIA and bMODIS averaged to level-IVecological regions. Class breaks
determined using seven equal intervals
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region as 345 km2 while MODIS NPP scheme
classified total forest cover as 43 km2. The major-
ity of tree species determined by IV values were
Red Pine (IV 37.8), followed by Quaking Aspen
(IV 26.8), and northern White-cedar (IV 19.1),
thus this area is a good mixture of softwood and
hardwood. MODIS IGBP scheme classified a ma-
jority of area as grassland (38%), followed by
croplands (33%) and cropland/natural vegetation
mosaic (15%). Within the forest cover class, the
majority was classified as mixed forest (34 km2)
followed by the deciduous needleleaf forest
(8 km2). This area highlights the difficulty in
distinguishing similar vegetative covers such as
deciduous forest, croplands and grasslands in a
coarse scale passive sensor (Wright and Wimberly
2013). In addition, land cover heterogeneity may add
errors as this area is characterized as a complex mosaic
of various small-patch land covers such as prairies,

woodlands, forests on uplands, wet prairies, meadows,
fens, and wet forests in wetlands (Omernik 2004).

In terms of fuzzy-classification discrepancy, the
largest entropy value (greater than 0.5) was found in
Florida Coastal Lowlands (both Eastern and Western
section) and New England region (e.g., Central
Maine Coastal & Interior, Aroostook Hills &
Lowlands, and New England Piedmont section).
Florida Coaster Lowlands exhibited very good forest
cover agreement (FIA 0.65 and MODIS 0.67), but
the forest type classification created large errors as
FIA estimated an average 38% of softwood and 23%
hardwood, whereas MODIS NPP estimated only 5%
of softwood and 60% of hardwood. The forest com-
position in this area is dominated by Slash Pine (IV
16.23) and Loblolly Pine (IV 14.76), followed by
Balsam Fir (IV 5.57) and Red maple (IV 5.03). On
the other hand, MODIS IGBP classified the majority
of the area as woody savannas (30.4%), followed by

Fig. 6 Fuzzy membership of hardwood forest (%) classified by a FIA and bMODIS averaged to level-IVecological regions. Class breaks
determined using seven equal intervals
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Evergreen broadleaf (20.6%) and Grassland
(13.7%). MODIS NPP scheme failed to classify
softwood in these coastal areas, and the error
seemed to be the confusion between the woody
savannas and softwood. The second largest disagree-
ment found in the New England region is also relat-
ed to missing classification of softwoods in MODIS
NPP. The forest composition in the New England
region is relatively evenly comprised. The most
abundant tree species, Loblolly pine, has an IV of
14.08, followed by Red maple (IV 11.68) and
Balsam Fir (IV 10.72). The MODIS IGBP scheme,
on the other hand, classified the majority of area as
mixed forest (65%), followed by 20% of deciduous
broadleaf and only 3% of evergreen needleleaf.
Similarly, MODIS NPP scheme classified it as

hardwood (82%) dominant with less than 10% clas-
sified as softwood. Both Florida Coastal Lowland
and New England regions can be characterized as a
heterogeneous forest with high composition even-
ness, and it is not surprising that this heterogeneity
deteriorates the accuracy in a remote sensing
classification.

The MODIS carbon estimates (MOD17) are main-
ly validated by eddy flux towers such as Fluxnet or
Ameriflux communities but they are mostly located
in homogeneous managed forest plots. Thus, the
accuracy of upstream input of land cover must be
guaranteed to provide scientific credibility. As the
carbon cycle models such as Biome-BGC (Running
et al. 2004) or 3-PGS (Coops et al. 1998) widely
utilize MODIS land covers to estimate continental

Fig. 7 Cross-entropy (Hc) values
averaged to 66 level-IVecological
regions. Values closer to zero
indicate better agreement between
FIA and MODIS forest
classifications, whereas values
further from zero indicate greater
disagreement. Class breaks
determined using seven equal
intervals
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scale GPP or NPP, this study can allow users to
construct an upstream land cover error map and as-
sess how the misclassified land cover classes affect
prediction work.

Conclusions

This study aims to provide a Bbest practice^ quantitative
assessment of MODIS forest type classification validat-
ed by field-based FIA plot data. The result showed the
accuracy of the MODIS NPP product is not uniform in
all the regions assessed by applying a cross-entropy
equation. We determined that while MODIS forest clas-
sifications are generally agreeable with field-based for-
est types of softwood and hardwood, further species
group or species level classification is not comparable
to field-based FIA plot data. Overall, MODIS exhibited
a tendency to underestimate softwood forest at southern
latitudes and in the northeast likely due to misclassifi-
cation between forest cover and other vegetative land
covers such as grassland, cropland, or woody savannas.
The best forest classification agreement occurred over
the continental interior, Central Appalachians and in the
Mid-Atlantic. With the increasing need of accurate land
cover inputs in modeling forest carbon dynamics, this
study can provide a baseline reference for users to
understand the extent and degree of uncertainty as well
as a guideline for further regional scale validation of
land cover classification.
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