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North American bats are experiencing declines in part due to anthropogenic impacts resulting in habitat loss 
and disturbance. In eastern deciduous forests, bats rely on forest resources for all or part of the year. Therefore, 
to promote conservation of bats, it is essential to determine whether current forest management techniques are 
compatible with habitat use by bats. We evaluated the relative effect of landscape characteristics, including 
forest management variables, on sex-specific foraging habitat of an insectivorous forest-dwelling bat species, 
the evening bat (Nycticeius humeralis), and predicted areas of suitable habitat for N. humeralis. A total of 18 
variables were assessed using a maximum-entropy (Maxent) machine-learning approach: eight land use–land 
cover classes, three stand types, two topography measures, normalized difference vegetation index, and four 
forest management variables. Females showed the highest probability of presence closer to stands treated with 
prescribed fire, whereas males showed the highest probability of presence closer to reforested stands. In general, 
males exhibited more flexibility than females in their habitat selection. The Maxent model further indicated 
that habitat associated with suitability of > 70% was ~4 times larger for males than females, and predicted 
an additional area of suitable foraging habitat where no presence locations had been recorded. Our modeling 
approach may be suitable for other researchers to derive models appropriate for a wide range of bat species.
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Insectivorous bats play an important ecological role, providing 
valuable services such as pest management, while also serving 
as ecosystem indicators due to their sensitivity to a wide range 
of environmental stressors (Jones et al. 2009). Many bat spe-
cies in North America heavily rely on forest resources for food, 
commuting, roosting, and reproduction. Forest management 
practices are used for various reasons, including improving 
the health of the forest, attracting certain wildlife species, and 
producing timber products. These management techniques may 
have positive or negative effects on insectivorous bats that are 
dependent on forest resources. Thus, conservation scientists 
and managers require tools that simultaneously examine how 
numerous variables, including forest management techniques, 
influence the distribution of bats of a particular species. For 
example, forest management can improve habitat by reducing 
clutter that complicates the flight of some bats (Grindal and 

Brigham 1999; Patriquin and Barclay 2003; Owen et al. 2004). 
Prescribed burning, specifically, can also promote growth of new 
foliage necessary to increase insect prey for bats (Grindal et al. 
1999; Jung et al. 2012; but see Armitage and Ober 2012; Cox 
et al. 2016). Alternatively, forest management can both create 
and destroy important roosting habitat (Parnaby et  al. 2010, 
2011). The evening bat (Nycticeius humeralis), like several 
other bat species, inhabits managed forest stands (Menzel et al. 
1998; Istvanko et  al. 2016). Previous studies have addressed 
the effects of some forest management practices (Boyles and 
Aubrey 2006; Miles et al. 2006; Perry et al. 2007) but were un-
able to address an entire suite of management practices.

Nycticeius humeralis is a common insectivorous bat species 
that is broadly distributed throughout the southeastern United 
States. Particular aspects of its ecology make it an appropriate 
model for developing tools that address the impact of habitat 
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variables, including the influence of management techniques, on 
its distribution. For example, N. humeralis can be locally abun-
dant, is easy to capture, and has a relatively small home range 
for a bat species (Morris et al. 2011). Nycticeius humeralis com-
monly roosts beneath exfoliating bark and within snags, cavities, 
or crevices of both live and dead trees in mature stands (Menzel 
et al. 2001; Boyles and Aubrey 2006; Boyles and Robbins 2006; 
Istvanko et  al. 2016), typically near water (Kalcounis‐Rüppell 
et al. 2005). The species has a low aspect ratio associated with 
low maneuverability during flight, and a high wing loading for 
fast flight speed (Findley et al. 1972; Saunders and Barclay 1992), 
which would indicate a low tolerance to clutter. Nonetheless, 
N. humeralis is considered a flexible forager and forages along 
forest edges and riparian areas, above the canopy, in open hab-
itat, and within the forest (Clem 1993; Menzel et al. 1998, 2000; 
Carter et al. 2004; Morris et al. 2010).

Although sex differences in roosting ecology of N. humeralis 
have been addressed (e.g., Menzel et  al. 1999, 2001; Miles 
et al. 2006; Istvanko et al. 2016), information on sex-specific 
foraging behavior in this species is scant (but see Morris et al. 
2011; Istvanko et  al. 2016). Male and female insectivorous 
bats have differing energetic requirements due to demands 
placed on females during pregnancy and lactation in addi-
tion to reduced maneuverability of females during pregnancy 
(Hamilton and Barclay 1994; Grinevitch et al. 1995). Reduced 
use of torpor by females during pregnancy and lactation sub-
sequently increases energetic demands and requires greater 
prey consumption (Kurta et al. 1989), which can cause differ-
ential expression of spatial use and foraging habitat. Female 
bats show preference for higher-quality, homogenous patches 
of uncluttered habitat (Lintott et al. 2014; Rocha et al. 2017), 
suggesting that sex-specific use of habitat is driven by a need 
for more efficient foraging by females. Additionally, females 
show stronger fidelity to core foraging areas that are closer to 
the roost (Grinevitch et al. 1995; Istvanko et al. 2016), provide 
larger prey (Mata et  al. 2016), or are higher-quality foraging 
habitat (Wilkinson and Barclay 1997).

Radiotelemetry has allowed researchers to estimate bat 
home ranges and study habitat use. Unique to radiotelemetry, 
as opposed to other methods for sampling bats, is the genera-
tion of multiple spatial points from one individual. However, 
most approaches for analyses of habitat use require presence 
and absence data for models to estimate absolute probabilities 
of occurrence (i.e., the absolute probability that a species will 
occur in a defined unit). Therefore, the validity of these models 
depends on the quality of absence data, which are difficult to ob-
tain, especially for volant animals (MacKenzie and Royle 2005; 
Pearce and Boyce 2006). Alternatively, presence-only models, 
by producing a relative probability (i.e., the sum of probability 
values of all locations in the study area equals one), can avoid 
the high costs of sampling throughout their home range to obtain 
true representation of absence. Among presence-only models, 
a maximum-entropy machine-learning approach (hereafter 
Maxent—Phillips et al. 2004, 2006) has demonstrated higher 
predictive ability than other approaches (Elith et al. 2006). The 
Maxent model explicitly assumes that presence locations are 

compared with a sample of available habitats for the species. 
Presence data generated via radiotelemetry result in a biased 
nonrandom sample, as points are spatially autocorrelated. Thus, 
the success of Maxent models with radiotelemetry data requires 
accounting for the spatial and temporal sampling bias of pres-
ence records relative to identification of available locations 
across the landscape.

As current management practices determine future forest 
conditions, a knowledge of the influence of past habitat man-
agement on present bat distributions affords managers the 
ability to create future high-quality bat habitat. Our goals were 
to comprehensively evaluate sex-specific foraging habitat use 
by N.  humeralis in a forest with a history of management 
practices (e.g., burning, harvest, reforestation, and silviculture) 
and known habitat characteristics (e.g., land use–land cover, 
stand type, vegetation density, and topography), and to predict 
areas of suitable habitat for N. humeralis. To achieve this goal, 
we applied Maxent modeling to foraging data collected by 
radiotelemetry and corrected for sampling bias. We predicted 
that areas managed by prescribed burn or timber harvest, 
creating more open habitats, would be selected for foraging 
more than unmanaged areas. Because our data were collected 
during lactation and postlactation, we also predicted that there 
would be sex-specific differences in areas selected for foraging.

Materials and Methods
Study area.—Our study area, located in the USDA Forest 

Service (USFS) Sylamore Ranger District, Ozark–St. Francis 
National Forest, is ~10 km northwest of Mountain View, 
Arkansas (Fig. 1). The Sylamore Ranger District encompasses 
~53,000 ha within the counties of Stone, Searcy, Marion, 
Baxter, and Izard in the Ozark Highlands ecoregion of north-
central Arkansas. This district is largely composed of limestone 
and sandstone ridges in hardwood, pine, and mixed forests. 
Wildlife management practices in the Sylamore are a cooper-
ative effort between the Arkansas Game and Fish Commission 
and the USFS to enhance wildlife habitat. Timber manage-
ment practices range from small regeneration cuts to seed 
tree and shelterwood cuts. Prescribed burning is conducted in 
timber patches to reduce fuel and stimulate vegetative growth. 
Wildlife management practices in the area are primarily fo-
cused on white-tailed deer (Odocoileus virginianus) and turkey 
(Meleagris gallopavo) populations, with some large field sys-
tems being managed for bobwhite quail (Colinus virginianus) 
and eastern cottontail rabbits (Sylvilagus floridanus). More 
recently, intensive management has also targeted habitat en-
hancement for Indiana bats (Myotis sodalis—Perry et al. 2016).

Field methods.—We obtained foraging data for a total of 
32 individual N.  humeralis (17 females and 15 males) in 
June–August of 2013 and 2014, captured with triple-high and 
single-high mist nets. Basic characteristics such as sex, relative 
age (juvenile or adult), and reproductive condition (females: 
nonreproductive, lactating, or postlactating; males: reproduc-
tive or nonreproductive) were recorded. We attached 0.33-g 
VHF transmitters (Model LB-2X, Holohil, Carp, Ontario, 
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Canada) to the back of bats using Perma-Type or Skin Bond 
surgical cement. All female N. humeralis used in the study were 
lactating or postlactating when transmitters were attached. To 
avoid inhibiting foraging maneuverability, transmitter weight 
never exceeded 5% of the captured individual’s body mass 
(Brigham 1988), and handling time never exceeded 15  min 
to minimize capture-related stress. Bats were tracked daily 
using TRX-1000s receivers (Wildlife Materials, Murphysboro, 
Illinois) and 5-element folding Yagi antennas (Wildlife 
Materials) during their first foraging bouts of the night, begin-
ning when bats emerged from their roosts and ending when all 

bats returned. Foraging locations were estimated by triangu-
lation in 2-min intervals and each bat was monitored for an 
average of 6 days after capture and ~2 h per night during the 
first foraging bout. As a result, we collected a total of 1,223 
presence foraging locations (719 GPS points for females and 
504 GPS points for males). Further details of field methods 
are described in Istvanko et al. (2016). Methods conformed to 
guidelines of the American Society of Mammalogists for use of 
wild mammals in research (Sikes et al. 2016).

Correction to sampling bias.—Sampling bias may be de-
rived from two factors. First, the locations of net sites were 

Fig. 1.—Net sites and sex-specific presence locations of radiotracked Nycticeius humeralis in the Sylamore Ranger District, Arkansas. Insets show 
magnified view of six clusters of presence locations.
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not random, as a large portion of study area (west-central por-
tion of the district) was inaccessible, and we also relied on our 
prior knowledge of where evening bats had been captured in 
past years (e.g., near water features such as a small pond or 
road ruts that hold water). Second, N. humeralis has a relatively 
small home range and short commuting and foraging distance 
(Duchamp et al. 2004; Morris et al. 2011; Istvanko et al. 2016), 
which would produce a clustering of presence points from a 
radiotelemetry approach, imposing an important constraint on 
species distribution modeling. Because clustering of presence 
was unavoidable, we applied three methods to account for spa-
tial sampling bias derived from radiotracked presence records: 
1) We excluded all presence points from the date of release to 
reduce the spatial and temporal influence of the release site, as 
well as to ensure abnormal behavior associated with capture-
related stress was not included in the analyses. 2) To avoid bi-
ased weights by individuals in the model, we subsampled 20 
presence points per individual. These 20 presence points were 
systematically selected to limit spatial and temporal autocor-
relation within data using two criteria: a) any two consecutive 
points should be at least 5 min apart, and b) any two points from 
an individual should be at least 100 m apart. 3) We manipulated 
the background sampling effort using a “bias file” approach 
matching environmental variables’ sampling bias similar to 
the presence points. This correction approach has been exten-
sively tested and suggested by Kramer-Schadt et al. (2013) and 
Phillips et al. (2009). In practice, we first counted the presence 
points on 30-m by 30-m grids over the study area. Each grid 
containing presence points was then given a value of “1.” If no 
bat was detected in a grid, the grid was assigned a value 0.1 to 
indicate a 10th of the sampling effort. We then summed the grid 
values using a 3 × 3 moving window to create the “bias file.” 
For each sex, 2,000 grid locations of environmental variables 
were then proportionately selected according to manipulated 
sampling bias information from the bias file.

Environmental variables.—We considered a total of 18 
environmental variables: eight site-specific, land use–land 
cover classes (Barren, Crop, Developed, Herbaceous, Pasture, 
Shrubland, Water [permanent sources], and Wetlands); three 
stand types (Deciduous, Evergreen, and Mixed forest stands); 
four management practices conducted between 2004 and 2013 
(fire history records [FH], silviculture-treated stands [Silvic], 
reforested stands [RF], and harvested stands [Harv]); two top-
ographic variables (Slope and Elevation); and the normalized 
difference vegetation index (NDVI; Table 1).

To develop continuous variables, all predictor variables 
except NDVI and topography variables were converted to 
distance-based variables. A  distance-based quantification 
method measures the distance from a given land cover, stand 
type, or management polygon. A  land cover data set was 
obtained from the 2011 National Land Cover Database (NLCD, 
amended 2014 edition, https://www.mrlc.gov/sites/default/files/
metadata/landcover.html) data set. This land cover data set was 
validated by high-resolution aerial photographs from Digital 
Globe taken during 2014, provided by ArcGIS, and produced an 
overall accuracy of 91.2% (Kappa coefficient = 0.79), assuring 

the accuracy of land cover classes used in the study area. Forest 
management practices between 2004 and 2013 were determined 
at the stand level, through the Forest Service Activity Tracking 
System (FACTS) database within the Natural Resource Manager 
(NRM) suite of applications (https://www.fs.fed.us/nrm/index.
shtml). Individual treatments used and the corresponding area 
affected by each forest management practice are described in 
Table 2. The NDVI was calculated as the difference between 
near-infrared and red band from a Landsat 7 image taken on 11 
July 2014. An NDVI map was used as proxy for tree canopy 
density, with higher NDVI considered to have a denser canopy 
cover than lower NDVI. Slope and elevation were obtained from 
the National Elevation Dataset (NED) at resolutions of 1 arc-
second (resampled at 30 m). All environmental variables were 
processed into 30-m by 30-m raster resolution and checked for 
multicollinearity. If the correlation between any two variables 
exceeded absolute Pearson’s r-value of 0.75, we retained the 
variable with the least correlation with the other variables.

Maxent model.—To examine forest characteristics and man-
agement influences on sex-specific differences in habitat suita-
bility for N. humeralis, we applied a Maxent modeling approach 
to females and males separately. The details of the Maxent 
approach have been extensively explained in the literature 
(see Phillips et al. 2004, 2006; Merow et al. 2013). Maxent’s 
strengths in habitat modeling include its reliable prediction ac-
curacy for presence-only data, and a built-in jackknife test to 
evaluate the importance of individual variables and its param-
eter configuration capabilities (Yi et al. 2016). Maxent finds the 
maximum entropy in a geographic data set of species presence 
in relation to background environmental variables, and itera-
tively improves model fit determined by the gain, which is a 

Table 1.—Description of environmental variables used in the 
Maxent model.

Category Variable (abbreviation) Unit

Land cover Distance to barren land (Barren) Meters
Distance to crop land (Crop)  
Distance to developed land  
(Developed)

 

Distance to herbaceous land  
(Herbaceous)

 

Distance to pasture land (Pasture)  
Distance to shrubland (Shrubland)  
Distance to water (Water)  
Distance to wetlands (Wetlands)  

Stand type Distance to deciduous stands  
(Deciduous) 

Meters

Distance to evergreen stands  
(Evergreen)

 

Distance to mixed stands (Mixed)  
Forest man-
agement 
practices

Distance to burned stands (Fire  
history; FH) 

Meters

Distance to silviculture-treated stands 
(Silvic)

 

Distance to reforested stands (RF)  
Distance to harvested stands (Harv)  

Vegetation 
density

Normalized difference  
vegetation index (NDVI)

Unitless  
(between −1 and 1)

Topography Slope (Slope) Degrees
Elevation Meters
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likelihood statistic that maximizes the probability of presence. 
We used built-in auto-configuration that tunes the parameters 
(i.e., feature functions and a regularization coefficient) against 
an international data set using an empirical algorithm based on 
sample size (Phillips and Dudík 2008). Although the default 
parameterization may not produce the best result, especially 
when the sample size is small (Morales et al. 2017), different 
parameter options can be tested following a practical guide by 
Merow et al. (2013). However, our relatively large data set (540 
presence locations) was well-suited for the default setting.

We used three statistics to evaluate the model performance 
and contributions of environmental variables by randomly set-
ting aside 25% of the sample records for a testing data set: 
1)  the area under the receiver-operating-characteristic (ROC) 
curve (AUC), 2) the jackknife test, and 3) the response curves 
generated per predictor (Phillips et  al. 2009). The AUC, a 
metric used for evaluating model fit in Maxent (Fielding and 
Bell 1997; Liu et al. 2011), is an arbitrary threshold measuring 
predictability accuracy based only on location rankings. The 
AUC metric can be interpreted as the probability that a ran-
domly chosen presence location is ranked higher than a ran-
domly chosen background point, with an AUC value of 0.5 
representing random probability (Merow et  al. 2013). We 
interpreted model performance categorized as failing (0.5 to 
0.6), poor (0.6 to 0.7), fair (0.7 to 0.8), good (0.8 to 0.9), or 
excellent (0.9 to 1—Swets 1988). We then used a jackknife test 
to determine the contribution of each variable to the probability 
of N. humeralis presence. For the jackknife test, 75% of pres-
ence points are used as training data and the remaining 25% 
are used as test data. The jackknife test result gives two levels 
of interpretation: 1)  each variable tested independently, with 
the variable that yields the highest gain containing the most 
useful information, and 2) with each variable removed from the 
full set of variables; the variable set that yields the lowest gain 
indicates that the removed variable contains the most useful 
information. We also produced variable response curves that 
measure the relationship of the probability of presence for the 
study species and each environmental variable, while keeping 
all other environmental variables at their average sample value. 
We interpreted only those variables that showed a strong, mon-
otypic pattern within a 1-km distance and with a probability of 
presence > 0.5.

Finally, the Maxent model produced a logistic map output 
of habitat suitability for the species. Suitability values were 
converted to percentages ranging from 0 to 100 per grid. The 

Maxent software package (Gomes et  al. 2018, version 3.1) 
in R (R Core Team 2017) was used for the model develop-
ment and generating sex-specific predictive habitat maps for 
N. humeralis.

Results
Model performance and contributions of the variables.—A 

total of 540 presence locations were used in the model (i.e., 20 
presence points each for 14 females and 13 males, respectively; 
three females and two males were excluded due to an absence 
of required presence points). For females, 14 environmental 
variables out of 18 were used; strong correlations (Pearson’s 
r > 0.75) were found between Mixed and Evergreen, Barren 
and Pasture, Silvic and Harv, Silvic and RF, and Harv and RF 
(Supplementary Data SD1). We retained the Mixed variable 
over Evergreen, the Pasture variable was retained over Barren, 
and the Silvic variable was retained over RF and Harv. For 
males, 15 environmental variables out of 18 were used with the 
same means of variable selection as females; the RF variable 
was retained over Silvic and Harv, and the Mixed variable was 
retained over Evergreen (Supplementary Data SD2). All other 
combinations of variables had a Pearson’s r < 0.75.

The calculated ROC showed higher AUC values for females 
(> 0.9) than males (> 0.8) for both training and test data sets. 
The highest AUC (0.92) occurred with the female training data 
set (Table 3). According to Swets’s classification, our model 
prediction accuracy was “excellent” and “good” for females 
and males, respectively. The jackknife test showed that for 
females, FH had the highest gain when used independently, 
followed by Pasture and Shrubland (Fig. 2A). For males, RF 
had the highest gain, followed by Shrubland and FH (Fig. 2B). 
Notably, Developed yielded the lowest gain (< 0.1) regardless 
of sex. For both females and males, when the variable set was 
tested with a given variable removed from the full data set, the 
results were consistent with the independent test, which further 
confirmed the reliability of model results.

Relationships of variables to suitability.—For females (Fig. 
3A), the predicted probability of presence (i.e., suitable habitats) 
gradually increased closer to FH and Herbaceous but increased 
with greater distance from Mixed. Elevation and Shrubland 
showed the highest probability at an intermediate distance; the 
highest probabilities of presence were at an elevation of 200 to 
300 m, and 300 to 500 m distance to Shrubland. For males (Fig. 
3B), the predicted probability of presence gradually increased 

Table 2.—Description of forest management variables.

Forest management  
practice

Treatment Total area Description of variable

Silviculture Precommercial thin and Tree release and weeding 95 km2 Selective felling, deadening, or removal of trees from a young 
stand, designed to free young trees from undesirable, competing 
vegetation

Harvest Commercial thin and Shelterwood establishment cut 133 km2 Intermediate harvest designed to reduce stand density to  
enhance forest health and tree growth

Reforestation Seed trees, Fill-in, and Replant trees 67 km2 Establishment of forest stands
Fire history Prescribed fire and Wildland fire use 145 km2 The application of the appropriate management to naturally 

ignited wildland fires in predefined designated areas
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closer to RF and Crop, and to a lesser extent, FH, Herbaceous, 
and Pasture. The probability of presence for Shrubland, sim-
ilar to the result for females, was highest at an intermediate 
distance (400 to 600 m). Regardless of sex, probability of pres-
ence was highest at close proximity to Water but decreased im-
mediately to its lowest at 1,000 m before gradually increasing 
again with distance. NDVI, Developed, and Wetlands showed 
no strong patterns with probability of presence.

Sex-specific habitat suitability maps.—Within the Sylamore 
Ranger District, several locations were identified for both sexes 
as high suitability (> 0.7) of foraging habitat (Fig. 4): the mid-
east, northeast, and southwest portion of the district, which also 
reflected presence locations used in the model. However, the 
Maxent model also identified, for both sexes, additional areas 
of suitable foraging habitat where no presence locations had 
been recorded: for females, an approximately 8-km2 cluster 
in the mid-west, a 4-km2 patch on the northwest corner, and a 
3-km2 patch on the west border of the district; and for males, 
clusters of ~3 km2 in the northern and western portions of the 
district and a 4-km2 patch on the southern part of the Sylamore 
district (Fig. 4). Habitat associated with a high suitability (> 
0.7) was nearly four times larger for males (33 km2) than for 
females (9 km2).

Discussion
We comprehensively examined the relative effect of forest 
management practices and key landscape characteristics on the 
sex-specific foraging range of N.  humeralis in the Sylamore 
Ranger District of the Ozark National Forest. Although 
foraging locations are associated with roost site locations due 
to the short commuting distances of N.  humeralis (compare 
figure 1 from Istvanko et al. 2016, with Fig. 1 above), our mod-
eling results showed that close proximity to burned sites (i.e., 
FH variable) was an important determinant for both females 
and males. However, the contribution of distance to burned 
sites was much higher for females than males; contributions 
evaluated by regularized gain were nearly double for females. 
This strong preference for females to forage near burned sites 
may be attributed to differences in sex-specific physiological 
requirements (Levin et al. 2013), that is, the need for females 
to increase prey intake during the highly energy-demanding 
period of reproduction (Kurta et  al. 1989; Encarnação and 
Dietz 2006). This energy hypothesis is supported by the po-
tential benefits of prescribed burning. Recently burned habitat 
opens the canopy and enhances herbaceous growth that subse-
quently favors colonization of insects (Lacki et al. 2009), and 
more severe fire may stimulate aquatic productivity, driving 

a pulse in insect availability, in turn encouraging bat activity 
(Malison and Baxter 2010). In some studies, however, abun-
dance of insects appeared not to respond to fire, and thus were 
weakly associated with bat activity (Armitage and Ober 2012; 
Cox et al. 2016). The variability of fire thus influences differen-
tial prey response (Swengel 2001) and subsequent bat activity.

Several variables, including topography variables and NDVI, 
showed little influence on probability of presence. Although 
Levin et al. (2013) indicated that male Rhinopoma microphyllum 
prefer foraging at higher and cooler elevations than females, in 
our study, no substantial relationship was found with elevation. 
Our study sites only had a maximum difference of ~300 m in 
elevation, which did not produce large temperature gradients. 
Similarly, although Suarez-Rubio et al. (2018) found a nega-
tive effect of clutter or canopy complexity on bat activity, the 
NDVI variable was consistently unimportant in our models. We 
used NDVI as an index of clutter, but a more detailed measure 
of vegetative clutter, such as those derived from LiDAR (Light 
Detection and Ranging), would be necessary to fully capture 
the effects of forest structure (Froidevaux et  al. 2016). For 
females, however, an association with an intermediate distance 
to Shrubland and negative responses to variables associated 
with forest covers (e.g., Deciduous and Mixed) suggests a pref-
erence for less cluttered habitat. This result aligns with Myotis 
lucifugus in North Dakota that selected edge habitats near open 
areas and water resources (Nelson and Gillam 2016). Thus, 
our results reinforce the management recommendation of open 
areas near edges, offering protection in proximity to shrubs and 
tree lines, for the management of female N. humeralis.

Our results also highlight subtle but important differences in 
areas of habitat suitability between males and females. Sexual 
segregation during foraging and differences in home range size 
have been reported specifically in N. humeralis, in that females 
have larger home ranges than males (Istvanko et al. 2016). Studies 
on sex-specific use of foraging habitat by other bat species also 
report more flexibility in selection of foraging areas by males 
than females. For example, female parti-colored bats (Vespertilio 
murinus) have more restricted foraging ranges than males and 
rely heavily on lakes (Safi et  al. 2007), which may be because 
their preferred prey occur over large water bodies and open areas 
(Jaberg et al. 1998). Senior et al. (2005) and Barclay (1991) also 
suggest that male insectivorous bats forage in poor-quality hab-
itat when excluded from high-quality habitat by energetically 
constrained females, resulting in larger foraging ranges. This hy-
pothesis may further explain our result that male N.  humeralis 
showed higher presence near reforested stands than burned sites. 
Male N. humeralis may have been excluded by females from the 
more open burned sites, and were thus pressured to forage near 
poorer-quality reforested stands. Although reforested stands likely 
provide adequate prey abundance and availability due to growth of 
new foliage, the habitat may have been more cluttered and thus dif-
ficult for larger female N. humeralis to navigate. Alternatively, the 
size of foraging areas of red bats (Lasiurus borealis) did not differ 
between sexes (Elmore et al. 2005), although reliable sources of 
water were available near most foraging areas. This may imply 
that sex-specific foraging area is dictated by landscape context in 

Table 3.—Area under the curve (AUC) values for training and test 
data sets for female and male Nycticeius humeralis in the Sylamore 
Ranger District, Arkansas.

AUC (training data set,  
75% of occurrence used)

AUC (test data set,  
25% of occurrence used)

Female 0.924 0.901
Male 0.874 0.850
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addition to foraging requirements. In our study, the more restricted 
areas of habitat suitability for females suggest that males exhibit 
more flexibility in their habitat selection than females, likely 

because males have lower energetic demands than females during 
lactation, a period of peak energetic demand for females. Lactating 
insectivorous bats are also believed to have smaller home ranges 

Fig. 2.—Results of the jackknife test of contributions of variables in modeling (A) female and (B) male Nycticeius humeralis’s habitat distribution 
in the Sylamore Ranger District, Arkansas. The regularized training gain describes how much better the Maxent distribution fits the presence data 
compared to a uniform distribution. The dark gray bars indicate the gain from using each variable independently, the light gray bars indicate the 
gain lost by removing the single variable from the full model, and the patterned bar indicates the gain using all of the variables.
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than pregnant bats because nursing requirements at night constrain 
foraging distances (Henry et al. 2002). In our study, we grouped 
lactating and nonlactating females, and future studies may aim to 
determine home range size differences in these two groups.

Our methodology evaluating habitat suitability for 
N.  humeralis provided new information on how forest man-
agement techniques influence their foraging habitat use. The 
generated habitat suitability maps can be used to predict areas 
of occupancy to be applied toward future conservation planning. 
The most influential variables for N. humeralis were Fire History 
and Reforestation, although models addressing other species of 
North American bats may wish to include different variables. For 
example, inclusion of ecogeographical variables such as large 
bodies of water or karst landscape features for conservation of 
cave-obligate species such as gray bats (Myotis grisescens) and 
Townsend’s big-eared bats (Corynorhinus townsendii) may be 
preferred. Forest management regimes are important to consider 
depending on their positive or negative impact on all species 
living in a management area. However, N. humeralis may pro-
vide good proxies to evaluate the effects of these management 
strategies on other bat species.
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