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ABSTRACT
The southeastern region of theUnited States exhibits an unusual trend of decreasing tree
species richness (TSR) from higher to lower latitudes over the Florida peninsula. This
trend contradicts thewidelymarked latitudinal diversity gradientwhere species richness
is highest in tropical zones and decreases towards extratropical regions. This study aims
to assess the environmental factors that prompt this atypical inverse latitudinal gradient
seen in TSR using the USDA Forest Service’s Forest Inventory and Analysis (FIA)
database. Fifteen variables under four categories of forested area, groundwater, soil
properties, and climate groups were examined to model TSR in the region. Generalized
linear models (GLMs) with Poisson distributions first assessed individual variables
to test explanatory power then the LASSO regularization method was utilized to
extract two subsets of the most influential variables to predict TSR. Forest area and
four climate variables (mean annual temperature, precipitation seasonality, mean
temperature of coldest quarter, and mean precipitation of driest quarter) were the
top five variables during the initial GLM assessment implying their potential individual
influence in regulating TSR. Two subsets of LASSO models contained seven and three
predictor variables, respectively. Frist subset includes seven predictors, presented in
highest to low standardized coefficient, mean temperature of coldest quarter, forested
area, precipitation seasonality, mean precipitation of driest quarter, water table depth,
spodosol, and available water storage. The other subset further excluded four lowest
influential variables from the first set, leaving the top three variables from the first
subset. The first subset of the LASSO model predicted TSR with 63.4% explained
deviance while the second subset reproduced 60.2% of deviance explained. With
only three variables used, the second model outperformed the first model evaluated
by the AIC value. We conclude that forest patch area, mean temperature of coldest
quarter, and precipitation seasonality are the highly influential variables of TSR among
environmental factors in the southeastern region of U.S., but evolutionary or historic
cause should be further incorporated to fully understand tree species diversity pattern
in this region.
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INTRODUCTION
Species richness, the number of different species within a defined area, depends on a
variety of influences such as environmental factors, inter- and intraspecific interactions,
evolutionary influences, and scale of observation (Dobzhansky, 1950; Hawkins et al., 2003;
Pontarp & Wiens, 2017; Rohde, 1992). The US southeastern coastal plain was recently
recognized as the 36th biodiversity hotspot by the Critical Ecosystem Partnership Fund
(CEPF 2016). Although this region has more than 1,500 endemic vascular plants, its
richest diversity is mostly herbaceous in the understory community of fire-dependent pine
savannas and there’s a big knowledge gap in understanding the spatial patterns of arboreal
stratum diversity (Noss et al., 2015). A latitudinal diversity gradient is a primary diversity
pattern recognized in a wide spectrum of taxa in which the highest levels of species diversity
are seen in the tropics while declining toward polar regions (Pianka, 1966; Rohde, 1992).
Although this pattern is generally well understood at continent to global scale, the inverse
trend is also present at the regional scale, but little is known about the evolutionary and
environmental mechanisms that may cause this inverse trend.

Tree species richness (TSR) in the southeastern region of US forests exhibit an inverse
latitudinal pattern (i.e., the TSR decreases from a mainland base towards the southern
tip of the peninsula). Regarding evolutionary cause, Simpson (1964) postulated that the
island-like geometry of peninsulas that are surrounded by ocean limit species immigration
and increase extinction rates, causing a decrease in diversity from the base to the tip of
the peninsula, also known as the peninsula effect. Although tree species has received little
attention due to the lack of spatially explicit historic TSR records, a variety of mobile species
with tracked movement attributed this pattern to peninsula effect; birds in Baja, California,
and in Yucatan, Mexico (Wilson & MacArthur, 1967), and six groups of vertebrae on
the Baja peninsula (Taylor & Regal, 1978). A study by Kwon, Larsen & Lee (2018) used
surrounding waterbody area as an indirect measure for the peninsula effect, however, the
influence of that variable was insignificant compared to other environmental variables.
More direct investigation of peninsula effect of TSR was conducted by examining the
latitudinal abundance patterns of 113 tree species assuming the steep abundance decline
along the Florida peninsula is a ramification of past immigration–extinction dynamics
(Kwon & Feng, 2019). However, most species (87% of 113 species) did not show an
evidence for peninsula effect. Thus, although not conclusive, we assume that the peninsula
effect (i.e., geometry caused immigration-extinction imbalance) has little impact on tree
species in this study. An alternative explanation to the inverse latitudinal diversity pattern
focuses on the varying environmental conditions of peninsulas (Jenkins & Rinne, 2008;
Milne & Forman, 1986). In a study on woody plant diversity in Maine, Milne & Forman
(1986) emphasized the importance of environmental heterogeneity in explaining inverse
latitudinal diversity pattern. However, their study lumped data frommultiple adjacent and
small peninsulas in the region and focused on alpha diversity (i.e., plot-level measures of
diversity) rather than landscape-level gamma diversity adopted in this study. In a study on
breeding bird diversity on the Baja peninsula,Wiggins (1999) determined that local habitat
heterogeneity had a greater influence on bird diversity than immigration rates on Baja
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Peninsula. Means & Simberloff (1987) also examined richness of amphibians and reptiles
in Florida and found that the highest levels of richness were seen along the mid region
of the peninsula attributed by habitat preference on environmental factors rather than
evolutionary cause. Other hypotheses predict history may influence current richness trends
as species may still be colonizing the peninsula or the current richness patterns may reflect
historic sea-levels (Seib, 1980).

The TSR studies seeking a causal mechanism of environmental factors are a challenging
task because tree species exhibit a delayed reaction to the environment in their demographic
processes requiring long term monitoring with an expensive sampling campaign covering
a large geographic extent.

The purpose of this study is to comprehensively evaluate climate variables, forest size,
ground water, and soil properties that have all demonstrated potential in determining TSR
in other regions. The ground water and soil properties were especially included due to the
large spread of swamps and woody wetlands in the region. These environmental conditions
potentially vary across the peninsula landform and may limit the tree species that can
tolerate those conditions, resulting in a decrease in TSR across the peninsula. We provide
a brief review of the selected group of environmental factors in the following sub-section
to support our variable selection.

Literature reviews on selected environmental factors
Climate
Temperature and precipitation are the two most influential abiotic factors on the
distribution of plant species (Prentice et al., 1992). Francis & Currie (2003) compared
global patterns of species richness to climate and revealed mean annual temperature,
annual water deficit, and annual potential evapotranspiration to be strongly correlated
to taxonomic group richness. However, the geometry of Florida may result in different
climate patterns than those seen in the mainland due to the surrounding water bodies.
Warmer waters surrounding the coast of the peninsulas can increase the amount of
precipitation over a region, as warmer waters provide the atmosphere with larger amounts
of moisture which eventually condenses in the atmosphere and becomes precipitation.
These differences in climate of the peninsula may limit the tree species that can inhabit the
region. Severe climatic events such as droughts can also have a negative impact on species
richness (Bigler et al., 2007; Dale et al., 2001). Martínez-Vilalta & Piñol (2002) examined
drought induced mortality of pine populations in the Iberian Peninsula and found varying
influence of drought depending on species’ water-use efficiency. A large portion of south
Florida is a fire-maintained ecosystem (e.g., pine savannas). Although the influence of fire
history (both wild and prescribed fire) to TSR is lacking, a drought index may also imply
the frequency of wild fire.

Forested area
The species richness and area relationship (species–area curve) is a well-known
phenomenon (Chisholm et al., 2013; Williamson, Gaston & Lonsdale, 2001). A larger area
can support more diverse habitats and larger quantities of resources while maintaining
higher immigration rates and lower extinction rates due to the greater number of individuals
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able to thrive in the area. TSR is related to the size of the study area if TSR is derived from
irregularly sized study areas (Latham & Ricklefs, 1993; Belote et al., 2011). However, even
when TSR is derived from the regularly sized grids (i.e., standardized by area), forest patch
area may still vary due to presence of other covers, thus a species - area relation might
remain important factor in gridded TSR data (Kwon, Larsen & Lee, 2018).

Ground water
The southeastern regions of the United States contain large tracts of marshes, swamps,
and woody wetlands that result in extremely shallow water tables which may potentially
limit TSR. While shallow water tables may limit TSR, so can the opposite condition. Deep
water tables can potentially hinder tree growth and survival if their roots don’t have access
to adequate water in the soil. The water table can have localized cones of depression due
to tree clusters and pumping wells (Yang, McMillan & Zammit, 2017). Zinko et al. (2005)
found a positive correlation between TSR and the availability of shallow groundwater in
predominantly dry area in Sweden. They found areas of shallow groundwater had higher
TSR with rare plant species suggesting that groundwater may be a strong determinant of
richness in regions where groundwater availability is a limiting factor. However, there is
limited empirical study on TSR in predominantly shallow water table areas.

Soil properties
Plants depend on soils for support, nutrition, and water storage. In the study of Fan
&Waring (2009), at the broad ecoregional scale, water storage in the soil was the most
dominant variable in predicting TSR in two of the ecoregions, the Southeastern Plain
and Middle Atlantic Coastal Plain. Also, Prentice et al. (1992) incorporated available
water storage into a global vegetation prediction model for predicting biomes and their
corresponding vegetation and found the water storage variable as an essential predictor
in their model along with minimum temperature. The large portion of Southern Coastal
Plain is covered in sandy Spodosol (e.g., Myakka as state soil for Florida), but its drainage
capacity can vary widely. The study area includes nine of 12 major global soil orders and
with soil pH ranging from 3 to 8.5 with a high pH due to the influence of the limestone
bedrock in south Florida (Noss et al., 2015).

MATERIALS & METHODS
Study area
The study area is comprised of South Carolina, Georgia, Alabama, and Florida, which
encompasses a variety of forest types, land covers, and landforms. This permits the
assessment of environmental factors that influence the range of TSR from very low
richness in southern Florida to very high in northern Georgia and Alabama. Large tracts
of woody wetlands with shallow water tables are primarily seen along the coast and
following waterbodies farther inland. The dominate forest types include oak-hickory,
loblolly-shortleaf pine, and longleaf-slash pine. The oak-hickory group is seen in the
northern region of the study. The loblolly-shortleaf pines cover regions in the Outer
Coastal Plain and the Southeastern Mixed Forest provinces ranging from on the coast
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to farther inland. The longleaf-slash pine is found mainly in the Outer Coastal Plain in
southern Alabama and Georgia, and northern Florida. The presence of gum-cypress and
pine forests interspersed suggests the presence of xerophytic and hydrophytic forms of
habitats, either excessively dry or wet conditions (Bailey et al., 1994).

Forest Inventory and Analysis (FIA)
The FIA program is a nation-wide strategic forest survey that originally served as the
foundation of a continental-scale policy study required by Resources Planning Act (RPA).
Forest Inventory and Analysis Database (FIADB version 6.0; https://apps.fs.usda.gov/fia/
datamart/datamart_access.html) used in this study is the most recent complete five-year
(2011–2015) cycle of inventory. The FIA program has implemented a common plot design
comprised of four 24-foot radius subplots where all trees with a diameter greater than five
inches are identified and measured. Each subplot houses a 6.8-foot radius microplot where
trees with a diameter of less than five inches are measured. The study area includes over
14,000 FIA plots across 545,500 km2. The FIA dataset of four states (Alabama, Florida,
Georgia and South Carolina) was downloaded as Microsoft Access Databases from the
Forest Service’s FIA DataMart and four tables (table name in the FIADB: Plot Snapshot,
Population Evaluation Group, Condition, and Tree) were used to estimate TSR. The
2015 population evaluation groups (Inventory year from 2011 to 2015) were selected
for each state to ensure the timing of sampling events to be consistent across all four
states. About 15% of plots in the study area showed forest management practice activity
such as artificial regeneration, cutting and clearing thus we excluded those plots using
the FIADB code of TRTCD during the examined five-year inventory cycle. As a result, a
total of 511,903 tally trees from 11,680 inventory plots were used across the study area.
A plot-level TSR estimation (see ‘Tree Species Richness’ below) and 15 environmental
variables (see ‘Environmental variables’ below) were aggregated into 20 km by 20 km grids
(total 1,312 grids). This grid size is chosen to match area of FIA sampling framework (Kwon
& Larsen, 2013; McRoberts et al., 2005). Issues with perturbed (fuzzed and swapped) FIA
plot locations representing privately-owned land were negligible in this study, as they were
aggregated over a much larger area (20 km by 20 km) of grids (Gibson et al., 2014; Prisley
et al., 2009). All environmental variables were aggregated at the grid unit as a mean value,
except the categorical variables of soil hydrologic group and Spodosol where the majority
values are used.

Tree Species Richness (TSR)
TSR, counts of unique tree species, was estimated by a bootstrapping method following
Kwon, Larsen & Lee (2018) to ensure our sample-based TSR estimates were not biased by
the number of plots at the grid unit because the relationship between the number of plots
and the TSR in a grid was linear (Pearson’s r of 0.58, p< 0.01). The number of plots per
grid ranged from 1 to 23 plots with an average of 13.5 plots per grid. We first selected only
grids that contained more than three plots and then we applied bootstrapping methods of
1,000 iterations to calculate mean values of species counts (TSR) after randomly selecting
three plots for each grid.
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Table 1 Grouping and description of 15 predictor variables used in the model. Spodosol, which was used as a categorical dummy variable and
not included in the initial GLM analysis.

Group Predictor variable Rank of
influence by
individual
GLM

Standardized
coefficient

Deviance
explained
(%)

Data
source

Forested Area Forested Area (FA) 1 0.346 46.23 MODIS
Groundwater Water Table Depth (WTD) 6 0.198 21.72 Fan, Li & Miguez-Macho (2013)

Available Water Storage (AWS) 7 0.136 8.35
Soil Hydrologic Group (SHG) 8 0.120 7.37

Soil
Property

Spodosol – – –

gSSURGO

PET 12 −0.173 10.41
AET 9 −0.100 3.68

MODIS

Mean Annual Temperature (MAT) 2 −0.302 41.91
Mean Temperature of Coldest Quarter
(MTCQ)

4 −0.331 44.60

Mean Annual Precipitation (MAP) 10 0.168 8.35
Precipitation Seasonality (PSN) 3 −0.360 44.71
Mean Precipitation of Driest Quarter
(MPDQ)

5 0.233 26.73

Temperature Seasonality (TSN) 11 0.146 7.98

WorldClim

SPEI 1994–1999 (SPEI I) 14 0.001 0.00

Climate

SPEI 1999–2004 (SPEI II) 13 0.015 0.11

WestWide
Drought Tracker

Environmental variables
Fifteen environmental variables (predictor variables) were employed and grouped into
four categories that may influence TSR: forested area, groundwater, soil properties, and
climate (Table 1).

Forested area (FA) variable was obtained from the remotely sensed MODIS satellite
product (MOD12, collection 5) anddownloaded from theUSGSLandProcessesDistributed
Active Archive Center Data Pool (https://lpdaac.usgs.gov/data/). We used IGBP land cover
classification scheme (Friedl et al., 2010) to calculate total areas of forest related land covers
(evergreen needleleaf, evergreen broadleaf, deciduous needleleaf, deciduous broadleaf,
and mixed forest) within each grid. The water table depth (WTD) variable under the
ground water group was downloaded as a NetCDF file with a raster resolution of 30 arc-
seconds (approximately 1 km resolution) from USGS (https://waterdata.usgs.gov/nwis).
The WTD is a simulated dataset based on water level measurements, ground water
flow and long-term table solution of the balance climate fluxes by Fan, Li & Miguez-
Macho (2013). The data set was validated by Fan, Li & Miguez-Macho (2013) with over
500,000 field observations of water table depth performed by the USGS between 1927 and
2009. The mean of the residuals was 0.443 m (Fan, Li & Miguez-Macho, 2013). The soil
property group includes three variables, Available Water Storage (AWS), Soil Hydrologic
Group (SHG) and Spodosol layer, from the gSSURGO (Gridded Soil Survey Geographic)
database downloaded from the USDA Natural Resources Conservation Service (NRCS)
(https://datagateway.nrcs.usda.gov). The AWS is the volume of water that the soil can
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Table 2 The basic characteristics of the soil hydrological groups (SHG), which are based on infiltration rate, water transmission, and runoff
potential.

SHG Soil type Infiltration rate and
water transmission

Runoff potential

A Sand, gravel, loamy sand, sandy loam High Low
B Silt loam, loam Moderate Moderate
C Sandy clay loam Moderate Moderate
D Clay loam, silty clay loam, sandy clay, silty clay, clay Low High

store, measured in cm to the depth of 150 centimeters, that is available to plants. We used
the SHG classification that categorizes soils into four main classes (A, B, C, and D) based
on their infiltration and runoff characteristics, which largely correspond to soil texture and
composition from high infiltration rate/low runoff potential (Group A) to low infiltration
rate/high runoff potential (Group D) in Table 2. The SHG variable is used to represent soil
types in addition to water infiltration rate, as it is strongly correlated to soil types. Lastly,
to account for the potential influence of the presence of a hardpan in the Spodosol—a soil
order abundant in Florida—which may hinder root growth, we used Spodosol soil order
maps as a categorical dummy variable.

The climate group includes ten variables (Table 1). We used 30 arc-second (ca. 1 km
at the equator) resolution of monthly temperature and precipitation data for the time
period 1950 to 2000 from the WorldClim data set (http://www.worldclim.org) to calculate
the following six variables: Mean Annual Temperature (MAT, ◦C), Mean Temperature of
Coldest Quarter (MTCQ, ◦C),Mean Annual Precipitation (MAP,mm),Mean Precipitation
of Driest Quarter (MPDQ, mm), Precipitation Seasonality (PSN, mm), calculated as the
standard deviation of the monthly precipitation totals divided by the mean monthly
precipitation, and Temperature Seasonality (TSN, ◦C) as standard deviation of the mean
monthly temperature data. Two other climate variables, potential evapotranspiration (PET,
mm) and actual evapotranspiration (AET,mm), were downloaded from theMODISGlobal
Evapotranspiration Project (http://www.ntsg.umt.edu) for the period 2000–2010 with a 1
km by 1 km spatial resolution. PET is a surrogate for the net atmospheric energy balance
independent of water availability and AET is the amount of water that was actually removed
from a surface. Lastly, the drought index of Standardized Precipitation Evapotranspiration
Index (SPEI) was downloaded from the West Wide Drought Tracker. We downloaded
for two five-year periods of SPEI; 1994–1999 namely as SPEI I and 1999–2004 as SPEI II
because trees exhibit a lag effect to changes in environmental conditions. If a drought did
affect tree distribution by inhibiting successful reproduction or the growth of saplings into
mature trees (mortality), then the affects would be seen seasons to years later (Bigler et al.,
2007).

LASSO regularization of generalized linear model
The generalized linear model (GLM) has been utilized in many species richness studies
(Buse & Griebeler, 2012; Guisan & Zimmermann, 2000) and its ecological applications fully
reviewed by McCullagh & Nelder (1989). The Least Absolute Shrinkage and Selection
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Operator (LASSO; Tibshirani, 1996) model was enacted under the generalized linear
model (GLM) specification for its ability to select variables that are the most important
from highly correlated variables through its shrinkage and selection method for linear
regression. LASSO is a continuous selection algorithm that selects a subset of predictors
by shrinking the coefficient of unimportant ones to zero and eliminating them from the
algorithm; making LASSO ideal for dealing with multicollinearity in data (Tibshirani,
1996). The environmental variables used as predictor variables in this study are highly
correlated with one another. For example, precipitation and temperature trends affect the
regional drought index and water table depth. All continuous predictor variables were
standardized (mean = 0, SD = 1) so that the regression coefficients could be compared
as measures of relative importance (Schielzeth, 2010). The Spodosol variable, a categorical
variable, was added as a dummy variable in the model. We first ran GLMs with a log
link function for each of our single predictor variables (except the categorical Spodosol
variable) to evaluate their individual explanatory power. Then we performed LASSO GLM
with 10-fold cross-validation to determine the optimal regularization penalty parameter,
λ value, to use in the prediction models. The λ values were chosen to determine which
predictor variables to incorporate in creating the prediction models. We used two values
of λ for selection; one is the λ minimum (LASSO λ min) that provides the minimum
cross-validated error and the other is the λ 1 standard error (LASSO λ 1se) that provides
the regularized model where the error is within one standard error. Both λ values were
used to produce prediction models of TSR as the selected predictors were different for
each λ value used. The two LASSO GLMs were compared by variance inflation factors
(VIFs), model performance as indicated by AIC and percent of total deviance explained.
VIFs indicate if multicollinearity exists in a regression analysis by examining howmuch the
variance of estimated regression coefficients are inflated as compared to when predictor
variables are not linearly related. Total deviance explained was calculated by the difference
between the deviance for the given model and the saturated model as:

2
n∑

i=1

yi

(
log
(
yi
ui

)
−
(
yi−ui

))
. (1)

Then, the percent deviance explained was calculated as (100-null deviance/residual
deviance) * 100.

The LASSO procedure was conducted under the R version 2.12.1 (R Core Team, 2014)
environment mainly using the glmnet package (Friedman, Hastie & Tibshirani, 2010).

RESULTS
Explanatory assessment of TSR and predictor variables
The observed TSR values, response variable, via a bootstrapping method exhibited a mean
TSR value of 20.1 (median TSR of 21) in the study area. The TSR values were highest (53.2)
in the northern areas of Georgia and South Carolina and throughout Alabama and lowest
(2.1) at the tip of the Florida peninsula and at the boundary between Georgia and Florida
(Fig. 1).
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Figure 1 Observed TSR via the bootstrapping method.
Full-size DOI: 10.7717/peerj.6781/fig-1

Figure 2 depicts 15 predictor variables (14 variables classified by their standard deviations
and a categorical variable of Spodosol). The description of geographic patterns of predictor
variables are provided in the order presented in Fig. 2. The lower latitudes of the Florida
peninsula have noticeably sparser FA than the rest of the study area. Regions of high FA
are seen in coastal areas, like the Florida panhandle, and farther inland. The WTD showed
a shallow water table for the majority of Florida and the coastal plain regions of Georgia
and South Carolina. The southern and coastal regions showed WTD between 0.1 m and
10.2 m below the surface. Deeper water tables reaching up to 50 m deep were observed
at the northern state lines of Alabama, Georgia, and South Carolina. The average AWS
ranged from 0 cm to 35 cm across the study area. The northern areas of Alabama and
Georgia showed areas of low AWS, which may be due to soil type. Florida had a low water
storage along the coastal regions with a mix of high-water storage in interior Florida. The
study area contained all seven groups of SHG. Converted to integer values from 1 to 4,
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Figure 2 Geographic patterns of 15 predictor variables (A–O). Five classes of standard deviations (Std.
Dev.) are commonly used to map the spatial variation of each variable.

Full-size DOI: 10.7717/peerj.6781/fig-2

Florida is comprised of low SHG values reflecting mostly groups A, which correspond to
areas of shallow water table depth. Coastal regions of South Carolina exhibited high SHG
values, representing group D. The MAT and MTCQ ranged from 10 ◦C to 24 ◦C and 8 ◦C
to 19 ◦C, respectively. The southern tip of Florida exhibited the highest MAT, while the
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lowest values were observed over northern Georgia where it is mountainous. The MTCQ
exhibited a similar geographic pattern to MAT but the latitudinal pattern was weaker than
MAT. TheMAP showed an overall high value in the Florida panhandle and Alabama, while
low values were observed in central Florida, Georgia and South Carolina. While MPDQ
showed a similar pattern to MAP, low values were observed throughout Florida with the
lowest values found on the southern tip of Florida. TSN increased as latitude increased
similar to MAT, while PSN showed an inverse pattern where the highest values were found
on the southern tip of Florida, especially the west side which may be due to its proximity
to the warm waters of the Gulf of Mexico. PET showed, in general, a decreasing pattern
with latitude following the MAT gradient, while AET exhibited a more scattered pattern
with pockets of high values near coastal area and interior Florida. Both SPEI I (1994–1999)
and SPEI II (1999–2004) showed local scale mixed patterns compared to the regional scale
patterns detected with the other climate variables. Spodosol was found mostly in coastal
Florida and concentrated over the southwestern portion of Florida.

Model prediction
Individual predictor variables assessed by the initial GLM showed five predictor variables
that explained >25% of the deviance in TSR (presented in descending order): FA, MAT,
PSN, MTCQ, and MPDQ (Table 1) with MAT, PSN, and MTCQ being negatively related
to TSR. The absolute value of the standardized coefficient followed the same order as did
the deviance explained. The LASSO regularization method produced two sets of variables
chosen by λ min (0.00143) and λ 1se (0.00315) via 10-fold cross-validation. Out of a total
of 15 variables, the first variable set (LASSO λ min), selected by the λ min, included six
variables - presented in descending order of absolute standardized penalized coefficient -
MTCQ, FA, PSN, MPDQ, WTD, Spodosol and AWS, while the other variable set (LASSO
λ 1se), selected by the λ 1se, contained three variables—FA, MTCQ and PSN in descending
order of absolute standardized penalized coefficient (Table 3). VIF values for all variables in
the two models were less than five, indicating negligible multicollinearity among predictor
variables selected in both models.

The LASSO λmin model exhibited a slightly higher % deviance explained (63.4%) than
the LASSO λ 1se model (60.2%), however, the AIC value, which considered the number
of variables selected was lower for the LASSO λ 1se model. Thus, the LASSO λ 1se model
outperformed LASSO λ min. The amount of % deviance explained by the two variable
subsets differed only slightly, suggesting four variables (MPDQ,WTD, Spodosol and AWS)
not included in LASSO λ 1se model added only marginal explanatory power.

Figure 3 shows the predicted TSR values modeled by LASSO λ min and LASSO λ 1se.
The two sets of predicted TSR appear to have a very similar geographic pattern: both
models produced a smooth change in TSR that predicted TSR decreases closer to coastal
areas and with lower latitude on the peninsula. The predicted TSR maps, however, failed to
capture the scattered regions of mid to high levels of observed TSR seen along the Florida
panhandle but overall produced a smooth inverse latitudinal diversity pattern that mirrors
the observed TSR gradient. The two models predicted TSR comparable to observed TSR
with slightly higher TSR for LASSO λ 1se (Table 4).
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Figure 3 TSR prediction by the LASSO λminmodel (A) and the LASSO λ 1se model (B).
Full-size DOI: 10.7717/peerj.6781/fig-3

Table 3 Selected variables by two LASSOGLMmodels.Variables are ordered from highest to lowest absolute standardized coefficient.

LASSO λminmodel LASSO λ 1se model

Selected variables Standardized penalized
coefficient

VIF Selected variables Standardized penalized
coefficient

VIF

MTCQ −0.0030743 3.45 FA 0.0044581 1.46
FA 0.0025398 1.22 MTCQ −0.0036412 1.25
PSN −0.0002472 1.26 PSN −0.0002364 1.67
MPDQ 0.0012111 2.27 – – –
WTD 0.0001551 4.62 – – –
Spodosol −0.0001271 3.67 – – –
AWS 0.0001199 2.86 – – –
AIC 7,378 7,195
Null deviance 3,559 3,559
Residual deviance (% explained) 2,256 (63.4%) 2,043 (60.2%)

Table 4 Predicted TSR by LASSO λmin and LASSO λ 1se models compared to observed TSR.

LASSO λmin LASSO λ 1se Observed TSR

Min 1.1 1.5 2.1
Mean 22.2 23.3 20.1
Median 20.5 21.4 22
Maximum 52.9 57.8 53.2
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DISCUSSION
Forested area
The FA variable was the strongest individual variable (46.23% deviance explained) in the
initial GLM and the second and first strongest variable in LASSO λ min and LASSO λ

1se model, respectively. This result supports the species–area hypothesis, where TSR is
largely influenced by the size of forest patches. Southern Florida has limited forested area
according to the FIA Phase 1 standards of forest classification (at least 1 acre in size with
at least 10% stocked with tree species). Thus, only a few plots were installed on the Florida
Keys and the southern tip of the peninsula. Gillespie (2005) aimed to fill this data gap by
predicting stand-level TSR in the tropical dry forests using landscape variables such as
area, nearest neighbor distance, and boundary complexity and forest patch area still proved
to be a highly influential variable in southern Florida just as seen in our LASSO variable
selection of the larger study area. Perhaps an approach to incorporate local studies of TSR
with the FIA data needs to be formulated to better understand diminishing habitats like
the tropical dry forest found on the southern tip of the Florida peninsula.

Groundwater
The WTD variable was the sixth in the initial GLM (21.72% deviance explained) and
fifth most influential variable included in only LASSO λ min model showing potential
in predicting TSR in the region. Large portion of coastal areas are composed of marshes,
wetlands or swamps and were initially hypothesized to limit TSR. Generally, low TSR
values were seen in areas containing a shallow water table, which advocates for the potential
influence of the shallow water table on richness. Previous research on plant richness trends
in arid environments found groundwater to be a limiting factor and a highly influential
variable (Allen-Diaz, 1991; Horton, Kolb & Hart, 2001). Groundwater is expected to have a
stronger influence on richness in arid environments where water is limited but this study
suggests groundwater has a marginal influence on TSR in temperate, humid regions. This
study did not assess the influence of seasonal changes in the water table on TSR due to
the lack of available data but researchers have found the seasonal variation in WTD to
influence TSR and tree mortality (Allen-Diaz, 1991; Braun et al., 2004). In addition, the
simulated WTDmay not accurately depict areas of localized depression due to agricultural
pumping although localized depressions would not likely have affected this study’s results
due to the methodology of averaging the predictor variables by grid cell.

Soil properties
The soil properties demonstrated a small degree of influence on TSR in the study area. Both
AWS and SHGdemonstrated amoderate relationship to TSRwhen assessed by initial GLMs
(7th and 8th rank, respectively). The Spodosol and AWS variable were included as sixth
and seventh in the LASSO λ min model, respectively, proved to be more influential than
the SHG variable that was not included in both models. Research assessing the influence
of AWS and SHG has been limited but soil properties may be more influential in other
regions with different environmental constraints and tree species. For example, Beedlow
et al. (2013) found the AWS had a strong effect on the growth of Douglas-firs in Oregon.
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Unlike the expectation, WTD and two soil predictor variables (AWS and SHG) were
loosely related: Pearson’s correlations between WTD-AWS, WTD-SHG and AWS-SHG
were 0.11, 0.16 and 0.20, respectively. The three variables represent water availability to
trees either as the water table (WTD), water between soil pore spaces (AWS), and in the
water’s ability to infiltrate the soil (SHG). The limitation with the AWS variable was that it
only exhibited minor, gradual changes between grid cells across the study area. Spodosol in
Florida, if containing a hardpan layer—usually 80–100 cm below the surface- may hinder
the growth of tree roots beyond hardpans. However, the Spodosol map used as categorical
variable had little variation within it and showed only a moderate influence in the model.
Also, many pedological observations suggested that the Bh horizon in spodosol do not
act as hardpans, not always restrictive of root penetration, and typically do not have low
permeability (Jenny, 1980).

Climate
Four climate variables were the second to fifth strongest variables (MAT, PSN, MTCQ,
and MPDQ in descending order of standardized coefficient) assessed by the initial GLMs.
Among them, MTCQ and PSN were the first and third, and second and third strongest
variables selected by LASSO λmin and LASSO λ 1se model, respectively. Climate variables,
such as temperature and precipitation, have been the focal point of several latitudinal
diversity gradient mechanisms (Currie, 1991). Although MAT exhibited the second most
explanatory power by the initial GLM, when assessed by LASSO, it was not selected due
to the strong correlation with MTCQ (Pearson’s r of 0.91, p< 0.01). Although LASSO
handled multicollinearity well, it was indifferent to variables with very strong correlations
and chose one of the highly correlated variables and ignored the others (Friedman, Hastie
& Tibshirani, 2010). Because Florida is the most lightning-prone states in the US (Grimm
et al., 2006), we use a drought index as a proxy for fire. The little influence of drought
index may due to a lagged effect of tree mortality to changing environment (Bigler et al.,
2007). Although the drought indices (SPEIs) showed little influence on TSR, the MPDQ
variable, fifth strongest variable by initial GLM, still demonstrated that precipitation in
the dry season is an important factor in limiting TSR. Crumpacker, Box & Hardin (2001)
also predicted extensive disruption to major woody ecosystems in Florida over a 100-year
period of warming scenarios, where the climate models predicted an increase in annual
temperature of 1◦ to 2 ◦C and a change in annual mean precipitation from −20% to
+10%. Studies using fossil pollen records in this region showed remarkable climatic
stability over long periods (Grimm et al., 2006), and some fire-dependent pine savannas
have analogs extending back to the Eocene, maintained mainly by stable natural processes
(Graham, 1999). However, a large portion of forested areas are converted from savannas
and woodlands prior to European colonization through active fire suppression. Although
we could not implement successional stage as a variable in our model, those areas may
be still experiencing the early successional stages. Thus, they are expected to have lower
diversity than late successional stage forests.

Kwon et al. (2019), PeerJ, DOI 10.7717/peerj.6781 14/19

https://peerj.com
http://dx.doi.org/10.7717/peerj.6781


CONCLUSIONS
The inverse latitudinal diversity gradient of TSR seen from northern Georgia and Alabama
to the southern tip of the Florida peninsula is strongly influenced by a combination of
forested area, minimum temperature of the coldest quarter, and precipitation seasonality.
Marginal influences by groundwater (water table depth) and soil properties (available
water storage) were also detected. Among those environmental variables shown influential
to TSR, forested area is the only variable that can be quickly altered due to anthropogenic
pressures. The other climatic, groundwater and soil property variables are also affected by
anthropogenic pressures, but changes are typically very gradual. Although, it is not possible
to suggest how much forested area is required to impact TSR without considering variables
interactions, it is noteworthy that 46% of deviance was explained in the GLM by using
only the forested area variable. Thus, by identifying forest patch area as a highly influential
variable of TSR in the study area, forest and land managers should try to preserve and
increase forest patch sizes to help combat the anticipated effects of climate change on TSR.
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